• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Expressões Trigonométricas

Expressões Trigonométricas

Mensagempor Anderson Alves » Sáb Fev 25, 2012 12:22

Olá Pessoal.
Minha dúvida agora é referente a essa expressão: _ Sen³x + Cos³x / Sen x + Cos x + Sen x * Cos x.
_ Resp.: 1
_ Não Consegui desenvolver essa questão.

Ficarei grato pela resposta;
Obrigado...
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Expressões Trigonométricas

Mensagempor DanielFerreira » Sáb Fev 25, 2012 13:34

Anderson Alves escreveu:Olá Pessoal.
Minha dúvida agora é referente a essa expressão: _ Sen³x + Cos³x / Sen x + Cos x + Sen x * Cos x.
_ Resp.: 1
_ Não Consegui desenvolver essa questão.

Ficarei grato pela resposta;
Obrigado...

Anderson,
essa questão está completa?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Expressões Trigonométricas

Mensagempor Anderson Alves » Sáb Fev 25, 2012 13:45

Sim. A expressão é essa mesma: Sen³x + Cos³x / Sen (x) + Cos (x) + Sen (x) x Cos (x).
Obrigado
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Expressões Trigonométricas

Mensagempor MarceloFantini » Sáb Fev 25, 2012 13:58

Anderson, por favor digite a questão usando LaTeX. Está complicado de entender a divisão. O comando de fração é

Código: Selecionar todos
\frac{numerador}{denominador}


O que dá por exemplo \frac{1}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Expressões Trigonométricas

Mensagempor timoteo » Sáb Fev 25, 2012 21:48

anderson, eu gostaria de saber se é uma equaçao igual a zero, dai a resoluçao é simples, ou se é um expresao? pois dai teriamos que descobrir por fatoraçao.
tem alguma igualdade?
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: Expressões Trigonométricas

Mensagempor MarceloFantini » Sáb Fev 25, 2012 23:04

Acredito que seja a expressão e devemos encontrá-la por fatoração, mas é melhor que ele esclareça isso, juntamente com qual é a expressão correta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Expressões Trigonométricas

Mensagempor Anderson Alves » Dom Fev 26, 2012 15:17

Olá.
Realmente é uma expressão de resposta 1. Tentei de diversas fórmulas que eu sei, mas não cheguei a resposta =1.
Valeu pelos retornos
Continuaremos nos comunicando...
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Expressões Trigonométricas

Mensagempor MarceloFantini » Seg Fev 27, 2012 00:39

Mostre o que você tentou, talvez possamos te mostrar o caminho.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.