• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação da circunferência

Equação da circunferência

Mensagempor Andreza » Sáb Fev 25, 2012 09:43

Qual é a equação da circunferência que circunscreve o triângulo equilátero ABC, cujo lado mede 4\sqrt[]{3} unidades, sabendo que o eixo y contém a altura relativa ao lado AB?

Eu consegui achar a altura q deu 6 unidades mas não consigo relacionar ela com a fórmula.


Desde já agradeço qualquer ajuda ou dica.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Equação da circunferência

Mensagempor Guill » Sáb Fev 25, 2012 11:43

Imaginando uma circunferência que circunscreve um triângulo equilátero de lado 4.\sqrt[]{3}, veremos que essa circunferência toca cada lado do triângulo, portanto esses lados são tângentes da circunferência.

A altura dessa triângulo é a bissetriz e a mediana, além de passarem pelo centro da circunferência:

h^2 + (2\sqrt[]{3})^2 = (4\sqrt[]{3})^2

h^2 + 12 = 48

h = 6


Sabendo a altura, e sabendo que ela faz parte do eixo y, sabemos que o centro da circunferência também está no eixo y. Agora, se traçarmos, a partir do centro dessa circunferênca, um segmento até o vértice e outro até o lado tangente, teremos um triângulo retângulo, onde o ângulo oposto ao raio é de 30º. Dessa forma, descobrimos que o segmento do centro ao vértice é 2 vezes maior que o segmento do centro à tangente. Como a soma desses comprimentos me dá a altura do triângulo:

r + 2r = 6

r = 2



O problema é que não existem informações acerca da posição do triângulo no eixo y. Dessa forma, não podemos saber onde a altura começa ou termina. Mas sabemos que a equação é do tipo:

x^2 + (y + n)^2 = 4
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)