por Aliocha Karamazov » Qua Fev 15, 2012 23:34
Pessoal, o exercício é o sequinte. E segue, abaixo, minha tentativa.
Resolva o problema de valor inicial.


Eu comeceu divindo tudo por t:

Agora, preciso encontrar o fator integrante, que é a função

. Como está no livro, é preciso multiplica a equação por

, o que dá:

Agora, eu preciso encontrar uma função

tal que
![[\mu(t)y]\prime=\mu(t)y\prime+\mu\prime(t)y=\mu(t)y\prime +\mu(t)\frac{2y}{t} [\mu(t)y]\prime=\mu(t)y\prime+\mu\prime(t)y=\mu(t)y\prime +\mu(t)\frac{2y}{t}](/latexrender/pictures/7ee7670e09a461204863f0d1cec6a0f9.png)
Bem, isso se resume a encontrar

tal que

. Eu fiz dessa maneira:

Como

, temos que

No entanto, no livro, está que

Alguém poderia me ajudar, dizendo onde e por que errei? Agradeço desde já.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por MarceloFantini » Qui Fev 16, 2012 01:42
Seu erro está aqui:

. Você deve colocar

do outro lado e integrar os dois lados da equação, não apenas um. Veja:


.
Daí,

. Acredito que esteja faltando uma constante também.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Aliocha Karamazov » Qui Fev 23, 2012 23:43
Entendi meu erro. Obrigado pela ajuda.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equações diferenciais - problema de valor inicial
por emsbp » Qui Abr 12, 2012 18:14
- 0 Respostas
- 959 Exibições
- Última mensagem por emsbp

Qui Abr 12, 2012 18:14
Cálculo: Limites, Derivadas e Integrais
-
- (calculo III) resolva o seguinte problema de valor inicial
por liviabgomes » Qui Dez 01, 2011 14:59
- 4 Respostas
- 2181 Exibições
- Última mensagem por liviabgomes

Seg Dez 05, 2011 11:36
Cálculo: Limites, Derivadas e Integrais
-
- Problema Equação Diferencial
por marinalcd » Ter Jun 14, 2016 20:21
- 1 Respostas
- 2306 Exibições
- Última mensagem por adauto martins

Qua Jun 22, 2016 12:31
Cálculo: Limites, Derivadas e Integrais
-
- Integrais (problemas de valor inicial)
por Anne2011 » Sex Set 16, 2011 16:26
- 4 Respostas
- 2207 Exibições
- Última mensagem por Anne2011

Sex Set 16, 2011 18:53
Cálculo: Limites, Derivadas e Integrais
-
- [Problemas de Valor Inicial] Equações Diferenciais
por mayconf » Ter Abr 15, 2014 18:24
- 1 Respostas
- 2018 Exibições
- Última mensagem por Russman

Ter Abr 15, 2014 22:28
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.