por helen_chaves » Qua Jun 03, 2009 12:00
Bom dia, pessoal!
Bem, estou diante de um problema com dificuldade em achar a forma correta de desenvolvê-lo. É o seguinte:
A receita total semanal da empresa The Books is On The Table (meu professor é assim mesmo, gente) obtida pela manufatura e venda de mesas é dada por:
R(x,y) = — 0,2x²—0,25y² —0,2xy + 200y +160yonde x denota o número de unidades com acabamento e y denota o número de unidades sem acabamento manufaturadas e vendidas por semana. O custo total atribuído a manufatura destas mesas é:
C(x,y) = 100x + 70y + 4000Determine quantas unidades com e sem acabamento esta empresa deve manufaturar por semana a fim de maximizar seu lucro. Qual o maior lucro possível?
_________________________________________________________________________________
Pois bem, eu imaginei que teria simplesmente que encontrar o ponto de máximo da função Receita Total. Segui os passos direitinho, encontrei
Fx = —0,4x —0,2y
Fy = —0,5y —0,2x + 360
Fiz um sistema e encontrei o ponto crítico P(-450,900)
Fxx= —0,4
Fyy= —0,5
Fxy = 0
Para encontrar D, joguei na fóruma Fxx(Fyy) - (Fxy)² e encontrei 0,2 , o que significa que é possível encontrar um ponto de mínimo/máximo nessa função. Como o Fxx < 0, neste caso, P é um ponto de máximo.
O problema é que na hora que eu substituo os valores na função receita, o resultado da ZERO!
Como a receita pode ser zero? Como eu vou achar o lucro disso, então?
Pessoal, não sei o que fazer! Alguém aí pode me dar uma luz?
Muito obrigada!

O temor do SENHOR é a instrução da sabedoria, e a humildade precede a honra. (Provérbios 15.33)
-
helen_chaves
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jun 03, 2009 10:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por Cleyson007 » Qua Jun 03, 2009 18:39
Boa tarde Helen Chaves!
Seja bem vinda ao Ajuda Matemática!

Por favor, queira confirmar:
R(x,y) = — 0,2x²—0,25y² —0,2xy + 200y +160yR(x,y) = -0,2x² -0,25y² -0,2xy + 200y +160
xou
R(x,y) = -0,2x² -0,25y² -0,2xy + 200
x +160y
Um abraço.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por helen_chaves » Qui Jun 04, 2009 00:31
Olá, Cleyson!
Eu também achei estranho quando vi o problema pela primeira vez, mas não, é y e y mesmo! Talvez tenha sido falta de atenção do professor quando digitou, mas é assim que está na folha...

O temor do SENHOR é a instrução da sabedoria, e a humildade precede a honra. (Provérbios 15.33)
-
helen_chaves
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jun 03, 2009 10:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por Cleyson007 » Sex Jun 05, 2009 12:51
helen_chaves escreveu:Olá, Cleyson!
Eu também achei estranho quando vi o problema pela primeira vez, mas não, é y e y mesmo! Talvez tenha sido falta de atenção do professor quando digitou, mas é assim que está na folha...

Boa tarde Helen Chaves!
Desculpe pela demora
Sinceramente, estou achando estranho.. como você disse, pode ter sido falta de atenção do professor.
Por favor, confirma com ele, ok?
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite de duas variaveis
por Tixa11 » Seg Abr 01, 2013 13:13
- 1 Respostas
- 2097 Exibições
- Última mensagem por young_jedi

Qua Abr 03, 2013 11:09
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Duas variaveis
por fabriel » Sáb Jun 15, 2013 16:48
- 2 Respostas
- 2375 Exibições
- Última mensagem por temujin

Sáb Jun 15, 2013 19:10
Cálculo: Limites, Derivadas e Integrais
-
- Função de duas variáveis
por lilianers » Qua Ago 21, 2013 19:37
- 1 Respostas
- 2263 Exibições
- Última mensagem por Renato_RJ

Qui Ago 22, 2013 12:46
Funções
-
- Limites duas variaveis
por Razoli » Qui Jul 03, 2014 23:22
- 2 Respostas
- 2457 Exibições
- Última mensagem por Razoli

Qui Jul 03, 2014 23:41
Cálculo: Limites, Derivadas e Integrais
-
- equação com duas variaveis
por celita » Qui Jul 28, 2016 23:34
- 1 Respostas
- 3244 Exibições
- Última mensagem por Daniel Bosi

Sex Jul 29, 2016 09:37
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.