por nathyn » Sex Fev 10, 2012 15:53
Oii, gente não sei nem por onde começar na simplificação dessas questões, gostaria
de uma ajuda por favor, se a ideia de uma for a mesma para o restante, não ha a
necessidade de fazer d explicar todas, mas me ajudem por favor... =/
1-)
![\frac{\sqrt[]{2 + \sqrt[]{3}}}{\sqrt[]{2 - \sqrt[]{3}}} + \frac{\sqrt[]{2 - \sqrt[]{3}}}{\sqrt[]{2 + \sqrt[]{3}}} \frac{\sqrt[]{2 + \sqrt[]{3}}}{\sqrt[]{2 - \sqrt[]{3}}} + \frac{\sqrt[]{2 - \sqrt[]{3}}}{\sqrt[]{2 + \sqrt[]{3}}}](/latexrender/pictures/35ecde65b10cdaf3c120038af808ba05.png)
Resp: 4
2-)
![\frac{2 + \sqrt[]{3}}{\sqrt[]{2} + \sqrt[]{2 + \sqrt[]{3}}} + \frac{2 - \sqrt[]{3}}{\sqrt[]{2} - \sqrt[]{2 - \sqrt[]{3}}} \frac{2 + \sqrt[]{3}}{\sqrt[]{2} + \sqrt[]{2 + \sqrt[]{3}}} + \frac{2 - \sqrt[]{3}}{\sqrt[]{2} - \sqrt[]{2 - \sqrt[]{3}}}](/latexrender/pictures/9b4c6786a084bd620c64b381db12716f.png)
Resp:
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
3-)
![\frac{\sqrt[]{48} + \sqrt[]{27} - \sqrt[]{125}}{\sqrt[]{12} + \sqrt[]{108} - \sqrt[]{180}} \frac{\sqrt[]{48} + \sqrt[]{27} - \sqrt[]{125}}{\sqrt[]{12} + \sqrt[]{108} - \sqrt[]{180}}](/latexrender/pictures/87979b718723c54557ad9f2111fc3fb3.png)
eu consegui o começo, encontrei:
![\frac{7\sqrt[]{3} - 5\sqrt[]{5}}{8\sqrt[]{3} - 6\sqrt[]{5}} \frac{7\sqrt[]{3} - 5\sqrt[]{5}}{8\sqrt[]{3} - 6\sqrt[]{5}}](/latexrender/pictures/d3e33ec92e254a04e0ea3c8198ea9382.png)
e não sei resolver =/
Resp:
![\frac{9+ \sqrt[]{15}}{6} \frac{9+ \sqrt[]{15}}{6}](/latexrender/pictures/b1b215d3c0c065ef85b103a5b4d74b17.png)
4-)
![\frac{\sqrt[]{3 - 2 \sqrt[]{2}}}{\sqrt[]{17 - 12 \sqrt[]{2}}} - \frac{\sqrt[]{3 + 2 \sqrt[]{2}}}{\sqrt[]{17 + 12 \sqrt[]{2}}} \frac{\sqrt[]{3 - 2 \sqrt[]{2}}}{\sqrt[]{17 - 12 \sqrt[]{2}}} - \frac{\sqrt[]{3 + 2 \sqrt[]{2}}}{\sqrt[]{17 + 12 \sqrt[]{2}}}](/latexrender/pictures/76f903f77417434c33957f521e57388c.png)
Resp: 2
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Arkanus Darondra » Sex Fev 10, 2012 22:53
-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por nathyn » Seg Fev 13, 2012 12:17
Pooo, brigadãoo!! =D
Eu entendi a ideia, mas a segunda não consegui fazer pq a ideia é diferente =/,
a ultima eu fiz mas nao sei onde estou errando...
4-)
![\frac{\sqrt[]{3 - 2 \sqrt[]{2}}}{\sqrt[]{17 - 12 \sqrt[]{2}}} - \frac{\sqrt[]{3 + 2 \sqrt[]{2}}}{\sqrt[]{17 + 12 \sqrt[]{2}}} \frac{\sqrt[]{3 - 2 \sqrt[]{2}}}{\sqrt[]{17 - 12 \sqrt[]{2}}} - \frac{\sqrt[]{3 + 2 \sqrt[]{2}}}{\sqrt[]{17 + 12 \sqrt[]{2}}}](/latexrender/pictures/76f903f77417434c33957f521e57388c.png)
eu fiz:
![\frac{\left(\sqrt[]{3-2\sqrt[]{2}} \right)\left(\sqrt[]{17 + 12\sqrt[]{2}} \right) - \left(\sqrt[]{3 + 2\sqrt[]{2}} \right)\left(\sqrt[]{17 - 12\sqrt[]{2}} \right)}{\left(\sqrt[]{17 + 12\sqrt[]{2}} \right)\left(\sqrt[]{17 - 12\sqrt[]{2}} \right)} \frac{\left(\sqrt[]{3-2\sqrt[]{2}} \right)\left(\sqrt[]{17 + 12\sqrt[]{2}} \right) - \left(\sqrt[]{3 + 2\sqrt[]{2}} \right)\left(\sqrt[]{17 - 12\sqrt[]{2}} \right)}{\left(\sqrt[]{17 + 12\sqrt[]{2}} \right)\left(\sqrt[]{17 - 12\sqrt[]{2}} \right)}](/latexrender/pictures/85d62d908af9a950d7bfeb1b72e8adec.png)
![\frac{= \sqrt[]{51 + 36\sqrt[]{2} - 34\sqrt[]{2} - 48} - \sqrt[]{51 - 36\sqrt[]{2} + 34\sqrt[]{2} - 48}}{\sqrt[]{1}} \frac{= \sqrt[]{51 + 36\sqrt[]{2} - 34\sqrt[]{2} - 48} - \sqrt[]{51 - 36\sqrt[]{2} + 34\sqrt[]{2} - 48}}{\sqrt[]{1}}](/latexrender/pictures/688ecbb575c15b1deb2f3f6835102f04.png)
![\sqrt[]{3+ 2\sqrt[]{2}} - \sqrt[]{3 - 2\sqrt[]{2}} \sqrt[]{3+ 2\sqrt[]{2}} - \sqrt[]{3 - 2\sqrt[]{2}}](/latexrender/pictures/0c01fffafc2d6ea8cd11665d5a293ed7.png)
e agora nao sei como continuo, isso se estiver certo =/
Se alguem puder ajudar
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Arkanus Darondra » Seg Fev 13, 2012 13:09
-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por nathyn » Seg Fev 13, 2012 13:20
aah nao, ta errado pq resposta é
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
e não 2 =(.
Mas brigada ae pela ajuda =)
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Arkanus Darondra » Seg Fev 13, 2012 13:59
nathyn escreveu:aah nao, ta errado pq resposta é
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
e não 2 =(.
Mas brigada ae pela ajuda =)
nathyn, você mesma postou 2 como gabarito.
Porém, se, eventualmente, você digitou errado no fórum, desconsidere o gabarito.
A resposta é 2.Para não restar dúvida, veja o link abaixo:
WolframalphaQualquer problema, retorne.

-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por nathyn » Seg Fev 13, 2012 16:39
Pooo, mil desculpas erro meu. =(
Muito obrigada pela explicalção e pela atenção.

Jah vi que q tenho q parar de me restringir ao que tenho e começar
a colocar a criatividade pra funcionar. hauahuahuahuahua
Brigadão e perdoe meu erro. =/
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por nathyn » Ter Fev 14, 2012 18:11
oiee, ainda não consegui resolver a segunda, me ajude por favor...
2-)
![\frac{2 + \sqrt[]{3}}{\sqrt[]{2} + \sqrt[]{2 + \sqrt[]{3}}} + \frac{2 - \sqrt[]{3}}{\sqrt[]{2} - \sqrt[]{2 - \sqrt[]{3}}} \frac{2 + \sqrt[]{3}}{\sqrt[]{2} + \sqrt[]{2 + \sqrt[]{3}}} + \frac{2 - \sqrt[]{3}}{\sqrt[]{2} - \sqrt[]{2 - \sqrt[]{3}}}](/latexrender/pictures/9b4c6786a084bd620c64b381db12716f.png)
Resp:
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
Eu multipliquei cada fração pelo inverso do seu denominador, para eliminar as raizes do mesmo e ficou:
![\frac{\left(2 + \sqrt[]{3} \right)\left(\sqrt[]{2} - \sqrt[]{2 + \sqrt[]{3}} \right)}{2 - 2 -\sqrt[]{3}} + \frac{\left(2 - \sqrt[]{3} \right)\left(\sqrt[]{2} + \sqrt[]{2 - \sqrt[]{3}} \right)}{2 - 2 +\sqrt[]{3}} \frac{\left(2 + \sqrt[]{3} \right)\left(\sqrt[]{2} - \sqrt[]{2 + \sqrt[]{3}} \right)}{2 - 2 -\sqrt[]{3}} + \frac{\left(2 - \sqrt[]{3} \right)\left(\sqrt[]{2} + \sqrt[]{2 - \sqrt[]{3}} \right)}{2 - 2 +\sqrt[]{3}}](/latexrender/pictures/c156b2440bf122cb7cbc7eeafcbe3205.png)
Como o denominador da primeira era
![- \sqrt[]{3} - \sqrt[]{3}](/latexrender/pictures/5146764d594e41cc1e0df3c201b01a02.png)
, o sinal do numerador da primeira foram mudados, ficando:
![\frac{-2 \sqrt[]{2} + 2\sqrt[]{2 + \sqrt[]{3}} -\sqrt[]{6} + \sqrt[]{6 + 3\sqrt[]{3}}}{\sqrt[]{3}} + \frac{2 \sqrt[]{2} + 2\sqrt[]{2 - \sqrt[]{3}} -\sqrt[]{6} - \sqrt[]{6 - 3\sqrt[]{3}}}{\sqrt[]{3}} \frac{-2 \sqrt[]{2} + 2\sqrt[]{2 + \sqrt[]{3}} -\sqrt[]{6} + \sqrt[]{6 + 3\sqrt[]{3}}}{\sqrt[]{3}} + \frac{2 \sqrt[]{2} + 2\sqrt[]{2 - \sqrt[]{3}} -\sqrt[]{6} - \sqrt[]{6 - 3\sqrt[]{3}}}{\sqrt[]{3}}](/latexrender/pictures/b4435ab6b21a3b089fcf9ce7455b9d0a.png)
Calculando...
![\frac{2\sqrt[]{2 + \sqrt[]{3}} - 2\sqrt[]{6} + \sqrt[]{6 + 3\sqrt[]{3}} - \sqrt[]{6 - 3\sqrt[]{3}}}{\sqrt[]{3}} \frac{2\sqrt[]{2 + \sqrt[]{3}} - 2\sqrt[]{6} + \sqrt[]{6 + 3\sqrt[]{3}} - \sqrt[]{6 - 3\sqrt[]{3}}}{\sqrt[]{3}}](/latexrender/pictures/064eac5f877c0f5c68ae7391c1b032a1.png)
Racionalizando o denominador fica:
![\frac{2\sqrt[]{6 + 3\sqrt[]{3}} -6\sqrt[]{2} + \sqrt[]{18 + 9\sqrt[]{3}} - \sqrt[]{18 - 9\sqrt[]{3}}}{3} \frac{2\sqrt[]{6 + 3\sqrt[]{3}} -6\sqrt[]{2} + \sqrt[]{18 + 9\sqrt[]{3}} - \sqrt[]{18 - 9\sqrt[]{3}}}{3}](/latexrender/pictures/57d4664c62c4af3e7dd33bd2a9571f49.png)
Daí então não sei como resolver, se alguem puder me ajudar por favor...
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Frações Algébricas] Como simplifico essa fração?
por Kah » Qua Mar 18, 2015 17:44
- 1 Respostas
- 2152 Exibições
- Última mensagem por Russman

Qua Mar 18, 2015 22:38
Álgebra Elementar
-
- Oi como vai...
por Fiel8 » Qua Jul 01, 2009 16:59
- 1 Respostas
- 4330 Exibições
- Última mensagem por Cleyson007

Qua Jul 01, 2009 18:11
Sistemas de Equações
-
- Sen a = 4/5 cos b = 2/3 como a < 0 e b < ?/2
por Parole » Sex Set 30, 2011 18:34
- 0 Respostas
- 3237 Exibições
- Última mensagem por Parole

Sex Set 30, 2011 18:34
Trigonometria
-
- Sen a = 4/5 cos b = 2/3 como a < 0 e b < ?/2
por Parole » Sex Set 30, 2011 18:36
- 0 Respostas
- 2775 Exibições
- Última mensagem por Parole

Sex Set 30, 2011 18:36
Trigonometria
-
- como se faz?
por Amandatkm » Ter Abr 30, 2013 17:07
- 0 Respostas
- 2703 Exibições
- Última mensagem por Amandatkm

Ter Abr 30, 2013 17:07
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.