• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Potenciação] simplificar

[Potenciação] simplificar

Mensagempor rnts » Sáb Fev 11, 2012 10:50

Olá, não sei se estou postando na área correta. Na apostila, o exercício está no capítulo de Conjunto numéricos, então acredito que seja aqui mesmo. :$


Seja k \in N, calcule o valor da expressão:
{2}^{-(2k+1)} - {2}^{-(2k+1)} + {2}^{-2k}

Resposta :{-2}^{-(2k+1)}

Comecei multiplicando (2k+1) e (2k-1) por -1, encontrando (-2k - 1) e (-2k + 1).
{2}^{(-2k - 1)} - {2}^{(-2k+1)} + {2}^{-2k}

Utilizando propriedade de potência de mesma base, encontrei:
{2}^{-k} * {2}^{-k} * {2}^{-1} - {2}^{-k} * {2}^{-k} * {2}^{1} + {2}^{-k}*{2}^{-k}
Não consegui passar disso
rnts
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jan 27, 2012 12:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Potenciação] simplificar

Mensagempor LuizAquino » Sáb Fev 11, 2012 11:44

rnts escreveu:Seja k \in \mathbb{N}, calcule o valor da expressão:
{2}^{-(2k+1)} - {2}^{-(2k+1)} + {2}^{-2k}

Resposta : {-2}^{-(2k+1)}


Eu presumo que a expressão no exercício seja:

{2}^{-(2k+1)} - {2}^{(-2k+1)} + {2}^{-2k}

Note que você escreveu o sinal de "-" na potência do segundo termo na posição errada.

Desenvolvendo essa expressão, temos que:

2^{-2k}\cdot 2^{-1} - 2^{-2k}\cdot 2^1 + {2}^{-2k}

2^{-2k}\left(2^{-1} - 2^1 + 1\right)

2^{-2k}\left(\frac{1}{2} - 2 + 1\right)

2^{-2k}\left(-\frac{1}{2}\right)

-\frac{2^{-2k}}{2}

-2^{-2k-1}

-2^{-(2k+1)}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Potenciação] simplificar

Mensagempor rnts » Dom Fev 12, 2012 17:39

Puts, me desculpe. Eu olhei na apostila para ver se não tinha cometido nenhum erro, acabei não percebendo que errei. Aqui está a equação correta:
{2}^{-(2k+1)} - {2}^{-(2k-1)} + {2}^{-2k}

é -(2k-1) a potência do segundo 2. Peço desculpas.
rnts
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jan 27, 2012 12:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Potenciação] simplificar

Mensagempor LuizAquino » Dom Fev 12, 2012 18:16

rnts escreveu:Eu olhei na apostila para ver se não tinha cometido nenhum erro, acabei não percebendo que errei. Aqui está a equação correta:

{2}^{-(2k+1)} - {2}^{-(2k-1)} + {2}^{-2k}

é -(2k-1) a potência do segundo 2.


Note que o termo 2^{-(2k-1)} pode ser reescrito como 2^{(-2k+1)} , que foi como eu escrevi em minha mensagem anterior. A resolução continua como indicado anteriormente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: