• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Racionalização

Racionalização

Mensagempor nathyn » Sex Fev 10, 2012 15:21

Oie, gostaria de uma ajuda pra racionalizar isso ae, por favor...

\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1}

Eu já tentei fazer multiplicando por" \sqrt[3]{3} + 1 ", mas não acaba não saindo da raiz nunca =/
Se puderem me ajudar... Por favor.
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Racionalização

Mensagempor Arkanus Darondra » Sex Fev 10, 2012 17:37

Simples, basta usar o conceito de diferença de quadrados e um pouco de manipulação:
\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1}

\frac{\sqrt[3]{3^2} - 1}{\sqrt[3]{3} - 1}

\frac{(\sqrt[3]{3})^2 - 1^2}{\sqrt[3]{3} - 1}

\frac{(\sqrt[3]{3}-1)(\sqrt[3]{3}+1)}{\sqrt[3]{3} - 1)}

\sqrt[3]{3}+1
nathyn escreveu:Eu já tentei fazer multiplicando por" \sqrt[3]{3} + 1 ", mas não acaba não saindo da raiz nunca =/
Se puderem me ajudar... Por favor.

Seu raciocínio está quase correto. Neste caso deveriamos ter em mente o seguinte:
\sqrt[3]{3}.\sqrt[3]{3^2} = \sqrt[3]{3^3} = 3
(a-b)(a^2-ab+b^2)=a^3-b^3

Logo:

\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1}

\frac{\sqrt[3]{3^2}-1^2}{\sqrt[3]{3}-1}.\frac{\sqrt[3]{3^2}+\sqrt[3]{3}.1+1^2}{\sqrt[3]{3^2}+\sqrt[3]{3}.1+1^2}

\frac{(\sqrt[3]{3}+1)(\sqrt[3]{3}-1^3)}{\sqrt[3]{3}-1^3}.\frac{\sqrt[3]{3^2}+\sqrt[3]{3}.1+1^2}{\sqrt[3]{3^2}+\sqrt[3]{3}.1+1^2}

\frac{(\sqrt[3]{3}+1)(\sqrt[3]{3^3}-1^3)}{\sqrt[3]{3^3}-1^3}

\frac{(\sqrt[3]{3}+1)(3-1)}{3-1}

\sqrt[3]{3}+1
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Racionalização

Mensagempor nathyn » Seg Fev 13, 2012 12:28

Aaah entendi...
Muito obrigada =)
consegui até resolver outras questoes que eu tinha nessa mesma ideia.
Brigada mesmo =)
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.