• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Racionalização

Racionalização

Mensagempor nathyn » Sex Fev 10, 2012 15:21

Oie, gostaria de uma ajuda pra racionalizar isso ae, por favor...

\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1}

Eu já tentei fazer multiplicando por" \sqrt[3]{3} + 1 ", mas não acaba não saindo da raiz nunca =/
Se puderem me ajudar... Por favor.
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Racionalização

Mensagempor Arkanus Darondra » Sex Fev 10, 2012 17:37

Simples, basta usar o conceito de diferença de quadrados e um pouco de manipulação:
\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1}

\frac{\sqrt[3]{3^2} - 1}{\sqrt[3]{3} - 1}

\frac{(\sqrt[3]{3})^2 - 1^2}{\sqrt[3]{3} - 1}

\frac{(\sqrt[3]{3}-1)(\sqrt[3]{3}+1)}{\sqrt[3]{3} - 1)}

\sqrt[3]{3}+1
nathyn escreveu:Eu já tentei fazer multiplicando por" \sqrt[3]{3} + 1 ", mas não acaba não saindo da raiz nunca =/
Se puderem me ajudar... Por favor.

Seu raciocínio está quase correto. Neste caso deveriamos ter em mente o seguinte:
\sqrt[3]{3}.\sqrt[3]{3^2} = \sqrt[3]{3^3} = 3
(a-b)(a^2-ab+b^2)=a^3-b^3

Logo:

\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1}

\frac{\sqrt[3]{3^2}-1^2}{\sqrt[3]{3}-1}.\frac{\sqrt[3]{3^2}+\sqrt[3]{3}.1+1^2}{\sqrt[3]{3^2}+\sqrt[3]{3}.1+1^2}

\frac{(\sqrt[3]{3}+1)(\sqrt[3]{3}-1^3)}{\sqrt[3]{3}-1^3}.\frac{\sqrt[3]{3^2}+\sqrt[3]{3}.1+1^2}{\sqrt[3]{3^2}+\sqrt[3]{3}.1+1^2}

\frac{(\sqrt[3]{3}+1)(\sqrt[3]{3^3}-1^3)}{\sqrt[3]{3^3}-1^3}

\frac{(\sqrt[3]{3}+1)(3-1)}{3-1}

\sqrt[3]{3}+1
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Racionalização

Mensagempor nathyn » Seg Fev 13, 2012 12:28

Aaah entendi...
Muito obrigada =)
consegui até resolver outras questoes que eu tinha nessa mesma ideia.
Brigada mesmo =)
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}