• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos, Equações no campo dos Reais

Conjuntos, Equações no campo dos Reais

Mensagempor moyses » Ter Fev 07, 2012 12:44

ola pessoal mais uma vez eu aqui de novo poeguntando pra vocês kkkk :lol: lá vai:
33(FGV-SP) Resolva, no campo real, as equações:
A)5.{(1+x)}^{5}=20
B)\sqrt[]{3x+4}-x=-8
bom a letra A) eu consigui fazer 5.{(1+x)}^{5}=20\Rightarrow{(1+x)}^{5}=4\Rightarrow x=\sqrt[5]{4}-1
mais a letra B) nem consigui ?? como fazer a letra B) me ajudem ai pessoal fazendo favor :)
moyses
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Seg Ago 29, 2011 09:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: SISTEMA DE INFORMAÇÃO
Andamento: cursando

Re: Conjuntos, Equações no campo dos Reais

Mensagempor LuizAquino » Ter Fev 07, 2012 13:33

moyses escreveu:33(FGV-SP) Resolva, no campo real, as equações:
A) 5.{(1+x)}^{5}=20
B) \sqrt{3x+4}-x=-8
bom a letra A) eu consigui fazer 5.{(1+x)}^{5}=20\Rightarrow{(1+x)}^{5}=4\Rightarrow x=\sqrt[5]{4}-1
mais a letra B) nem consigui ?? como fazer a letra B) me ajudem ai pessoal fazendo favor :)


Por favor, vide a página abaixo e tente terminar o exercício:

Equações Irracionais
http://www.brasilescola.com/matematica/ ... ionais.htm
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Conjuntos, Equações no campo dos Reais

Mensagempor moyses » Ter Fev 07, 2012 15:29

obrigado a todos vou tentar.... :-D assim que possivel eu posto o resultado!
moyses
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Seg Ago 29, 2011 09:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: SISTEMA DE INFORMAÇÃO
Andamento: cursando

Re: Conjuntos, Equações no campo dos Reais

Mensagempor moyses » Qui Fev 09, 2012 16:57

\sqrt{3x+4}-x=-8 \Rightarrow \sqrt {3x+4}=x-8 \Rightarrow {sqrt{3x+4}}^{2}={x-8}^{2} \Rightarrow 3x+4={x-8}^{2} \Rightarrow 3x+4={x}^{2}-4x+4 \Rightarrow  -{x}^{2}+3x+4x-4=0 \Rightarrow -{x}^{2}+7x-4=0   \Rightarrow (-{x}^{2}+7x-4)(-1)=(0)(-1) \Rightarrow {x}^{2}-7x+4=0 |||AGORA ENTENDI, QUANDO A EQUAÇÃO TIVER UM RAIZ COM INCÓGNITA, BASTA ISOLAR O RADICANDO E ELEVAR AMBOS OS TERMOS AO QUADRADO||| huhu.. continuando agora tudo aquilo se tornou uma equação simples do 2° grau que da hora hahah usando a formula de bhaskara temos: {x}^{2}-7x+4=0 A=1,B=-7, C=4 \Delta = 33 , \frac{7 + \sqrt[]{33}}{2} ou \frac{7 - \sqrt[]{33}}{2} então V=( \frac{7 - \sqrt[]{33}}{2} , \frac{7 + \sqrt[]{33}}{2})
moyses
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Seg Ago 29, 2011 09:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: SISTEMA DE INFORMAÇÃO
Andamento: cursando

Re: Conjuntos, Equações no campo dos Reais

Mensagempor LuizAquino » Qui Fev 09, 2012 17:09

moyses escreveu:\sqrt{3x+4}-x=-8 \Rightarrow \sqrt {3x+4}=x-8 \Rightarrow {sqrt{3x+4}}^{2}={x-8}^{2} \Rightarrow 3x+4={x-8}^{2} \Rightarrow 3x+4={x}^{2}-4x+4 \Rightarrow -{x}^{2}+3x+4x-4=0 \Rightarrow -{x}^{2}+7x-4=0 \Rightarrow (-{x}^{2}+7x-4)(-1)=(0)(-1) \Rightarrow {x}^{2}-7x+4=0


Você errou o desenvolvimento.

O correto seria:

\left(\sqrt{3x+4}\right)^2 = (x-8)^2

3x+4 = x^2 - 16x + 64

x^2 - 19x + 60 = 0

Resolvendo essa equação, encontramos x = 15 e x = 4.

Agora devemos testar esses valores na equação original.

(i) para x = 15.

\sqrt{3\cdot 15 + 4} - 15 =

=\sqrt{49} - 15

= 7 - 15 = -8

A equação é atendida.

(i) para x = 4.

\sqrt{3\cdot 4 + 4} - 4 =

=\sqrt{16} - 4

= 4 - 4 = 0

A equação não é atendida (já que o valor final foi diferente de -8).

Conclusão: o conjunto solução da equação é S={15}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Conjuntos, Equações no campo dos Reais

Mensagempor moyses » Qui Fev 09, 2012 20:32

nossa obrigado eu nem percebi kkkkk na anciedade de respoder corretamente kkkk, mias obrigado mesmo assim mesmo aqora eu sei resolver equaçoes de racionalização!
moyses
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Seg Ago 29, 2011 09:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: SISTEMA DE INFORMAÇÃO
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?