• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistema Linear + Trigonometria]

[Sistema Linear + Trigonometria]

Mensagempor mdiego » Ter Fev 07, 2012 22:07

Descobrir os valores de \theta b e \theta c que satisfazem as seguintes equações:

Vb\cdotSen(\theta b) + \sqrt[]{3}Vb\cdotcos(\theta b) + Vc\cdotSen(\theta c) - \sqrt[]{3}Vc\cdotcos(\theta c) = 0

Vb\cdotcos(\theta b) - \sqrt[]{3}Vb\cdotSen(\theta b) + Vc\cdotcos(\theta c) + \sqrt[]{3}Vc\cdotSen(\theta c) + 1= 0

Os valores de Vb e Vc são conhecidos, e os ângulos \theta b e \theta b é menor do que 360º.

Não sei se há algum método matemático para resolver esse sistema. É um problema de engenharia, devo entrar com valores de Vb e Vc no Matlab e obter os respectivos ângulos. Provavelmente deve haver mais de uma solução possível.
mdiego
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Fev 07, 2012 21:38
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: [Sistema Linear + Trigonometria]

Mensagempor LuizAquino » Ter Fev 07, 2012 23:49

mdiego escreveu:Descobrir os valores de \theta b e \theta c que satisfazem as seguintes equações:

Vb\cdotSen(\theta b) + \sqrt[]{3}Vb\cdotcos(\theta b) + Vc\cdotSen(\theta c) - \sqrt[]{3}Vc\cdotcos(\theta c) = 0

Vb\cdotcos(\theta b) - \sqrt[]{3}Vb\cdotSen(\theta b) + Vc\cdotcos(\theta c) + \sqrt[]{3}Vc\cdotSen(\theta c) + 1= 0

Os valores de Vb e Vc são conhecidos, e os ângulos \theta b e \theta b é menor do que 360º.


mdiego escreveu:Não sei se há algum método matemático para resolver esse sistema.


Utilize um método de resolução para sistemas não lineares. Por exemplo, vide os métodos descritos nessa página:

Métodos Iterativos - Sistemas Não Lineares
http://www.math.ist.utl.pt/~calves/cour ... pii23.html

mdiego escreveu:É um problema de engenharia, devo entrar com valores de Vb e Vc no Matlab e obter os respectivos ângulos.


Consulte a página de ajuda do programa:

Solve system of nonlinear equations - MATLAB
http://www.mathworks.com/help/toolbox/o ... solve.html
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Sistema Linear + Trigonometria]

Mensagempor mdiego » Qua Fev 08, 2012 13:52

Valeu pela dica Luiz!

Pelo visto terei mesmo que recorrer a esse método. Estou vendo ainda se realmente será necessário resolver o sistema, mas se for preciso já sei como solucioná-lo.
mdiego
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Fev 07, 2012 21:38
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.