• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vestibulares

Vestibulares

Mensagempor J Hugo » Qua Fev 01, 2012 00:14

kjkjk - Cópia.jpeg
Foto

kjkjk - Cópia (2).jpeg
Foto2


Nessa questão meu resultado so esta dando b) mais e a letra a) ja tenteii varias vezes mais não consigo acha 3,4 m......
J Hugo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Jan 29, 2012 12:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecníco em Informatica
Andamento: cursando

Re: Vestibulares

Mensagempor Arkanus Darondra » Qua Fev 01, 2012 14:34

Hugo, por favor, procure redigir os textos do enunciado, e poste apenas imagens das figuras, para facilitar as futuras buscas no fórum.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Vestibulares

Mensagempor fraol » Sex Fev 03, 2012 23:14

Ressalvas feitas, vamos ao problema em questão.

Recortei sua figura e anexei abaixo para o desenvolvimento da solução.

geo0.png
geo0
geo0.png (107.18 KiB) Exibido 1708 vezes

Obs: os valores apresentados abaixo saem por Área do Círculo, Pitágoras e Relações Trigonométricas nos triângulos analisados. Caso reste alguma dúvida sobre a obtenção dos valores retorne.

Se observar o círculo menor verá:

[A1] Um setor circular de raio 2 e ângulo central igual 120 graus ( 2 x 60 ) cuja área é igual \frac{120}{360} . \pi (2)^2 = \frac{4 \pi}{3} .

[A2] Um triângulo isósceles de lados iguais medindo 2 , base medindo 2\sqrt{3} e altura igual a 1 , cuja área é igual a \frac{ 2 \sqrt{3} . (1) }{2}  = \sqrt{3} .

Se observar o círculo maior verá:

[A3] Um setor circular de raio 2 \sqrt{3} e ângulo central igual 60 graus ( 2 x 30 ) cuja área é igual \frac{60}{360} . \pi (2 \sqrt{3} )^2 = 2 \pi .

[A4] Um triângulo equilátero de lado medindo 2 \sqrt{3} , base medindo 2\sqrt{3} e altura igual a 3 , cuja área é igual a \frac{ 2 \sqrt{3} . ( 3 ) }{2}  = 3 \sqrt{3} .

A área solicitada é aquela compreendida pela intersecção dos dois círculos, então essa área vale:

S = ( A1 - A2) + (A3 - A4)

S = \left( \frac{4 \pi}{3} - \sqrt{3} \right) - \left( 2 \pi - 3 \sqrt{3}  \right)

S = \frac{4 \pi}{3} - \sqrt{3} - 2 \pi + 3 \sqrt{3}

Substituindo os valores dados você chegará ao resultado.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Vestibulares

Mensagempor J Hugo » Sáb Fev 04, 2012 08:46

Vlw Cara Td de Bom
J Hugo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Jan 29, 2012 12:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecníco em Informatica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}