• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas multifatores

Derivadas multifatores

Mensagempor Keleber » Sex Fev 03, 2012 16:05

Eu gostaria de saber como se precessa uma derivada de varios produtos: Como esta:

(f(x)g(x)H(x)L(x))´.

Por exemplo: qual a derivada de:

x²x³x. ou também, já que é de praxe usar senos e cosenos: (sen(x)cos(x)tang(x))´ e outras mais que puderem exemplificar.
Keleber
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 21, 2011 14:47
Formação Escolar: ENSINO MÉDIO
Área/Curso: Física
Andamento: cursando

Re: Derivadas multifatores

Mensagempor LuizAquino » Sex Fev 03, 2012 21:37

Keleber escreveu:Eu gostaria de saber como se processa uma derivada de vários produtos: Como esta:

(f(x)g(x)H(x)L(x))´.


Basta ir agrupando em duas partes e aplicando a derivada do produto. Desse modo, você pode obter a relação desejada.

[f(x)g(x)h(x)l(x)]^\prime = [f(x)g(x)]^\prime[h(x)l(x)] + [f(x)g(x)][h(x)l(x)]^\prime

=[f^\prime(x)g(x) + f(x)g^\prime(x)][h(x)l(x)] + [f(x)g(x)][h^\prime(x)l(x) + h(x)l^\prime(x)]

= f^\prime(x)g(x)h(x)l(x) + f(x)g^\prime(x)h(x)l(x) + f(x)g(x)h^\prime(x)l(x) + f(x)g(x)h(x)l^\prime(x)

Keleber escreveu:Por exemplo: qual a derivada de:

x²x³x. ou também, já que é de praxe usar senos e cosenos: (sen(x)cos(x)tang(x))´ e outras mais que puderem exemplificar.


Tente aplicar a ideia que ilustrei acima.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas multifatores

Mensagempor ant_dii » Sex Fev 03, 2012 21:42

Vamos estudar o caso de três funções, depois você poderá estender.

Supondo todas contínuas e deriváveis, vamos considerar que a multiplicação de duas funções é ainda uma função, ou seja, que g(x)\cdot h(x)=(g\cdot h)(x).

Agora, (preste atenção aos passos) temos

(f\cdot g \cdot h)'=[f\cdot(gh)]'=f'(gh)+f(gh)'=f'gh+f(g'h+gh')=f'gh+fg'h+fgh'

Apartir daí é possível generalizar...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Derivadas multifatores

Mensagempor ant_dii » Sex Fev 03, 2012 21:43

Mil desculpas Luiz, não vi que já havia respondido...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Derivadas multifatores

Mensagempor LuizAquino » Sex Fev 03, 2012 21:49

ant_dii escreveu:Mil desculpas Luiz, não vi que já havia respondido...


Sem problema!
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas multifatores

Mensagempor Keleber » Sáb Fev 04, 2012 11:29

Muito bom todas as respostas e exemplificações.

Eu vou tentar generalizar para equações do tipo: (x²2x/x³x²)´. Acredito que o método seja o mesmo. Também, generalizar para outros operadores seja bastante útil.

Como por exemplo: operadores cujo o produto não seja o produto dos operadores.

Obrigado e até a próxima.
Keleber
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 21, 2011 14:47
Formação Escolar: ENSINO MÉDIO
Área/Curso: Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?