• Anúncio Global
    Respostas
    Exibições
    Última mensagem

altura da torre

altura da torre

Mensagempor qscvrdxz » Ter Jun 02, 2009 19:21

Veja este exercício:

Uma pessoa de 1,60 m de altura, situada a 100 m de uma torre, avista o seu topo sob um ângulo de 35º com a horizontal. (Ela mede o ângulo com o auxílio de um teodolito). Qual a altura da torre?

Dúvidas:

1 - Essa horizontal que seria meu cateto adjacente está no chão ou está a 160 cm acima do chão?

2 - Caso meu cateto adjacente esteja realmente 160 cm acima do chão, para resolver o exercício eu simplesmente tenho de calcular a medida do cateto oposto ao ângulo de 35 º e adicionar 1,6?

Este enunciado me parece tão ambíguo, a tal da altura do observador complicou bastante este exercício pra mim, gostaria que alguém me explica-se como resolvê-lo.


Obrigado.
qscvrdxz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jun 02, 2009 19:01
Localização: Belo Horizonte, MG
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: altura da torre

Mensagempor Molina » Ter Jun 02, 2009 19:52

Fazendo um esboço do desenho, facilita bem as coisas.
Acho que você está no caminho certo..

Teríamos a formação de um triângulo, formado a cima de 1,60m, cujo lado parelelo ao chão mede 100m. O ângulo formado por este cateto com a hipotenusa, forma um ângulo de 35º. Teu objetivo é descobrir o valor do cateto oposto (ou seja, a altura da torre, com menos de 1,60).
Logo, calculando o valor do cateto oposto deve ser adicionado o valor de 1,60m (tamanho da pessoa observadora).

E agora, você acha que deverá que usar sen 35º ou cos 35º para resolver isto?
Veja a teoria dos dois casos para confirmar qual voce deve usar.


Abraços. Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: altura da torre

Mensagempor qscvrdxz » Ter Jun 02, 2009 23:15

Obrigado molina, minha dúvida éra o que fazer com a altura, mas como você confirmou minha linha de raciocínio estava correta, quanto ao cálculo das razões trigonométricas do triângulo retângulo eu estou tranquilo nesta área.
qscvrdxz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jun 02, 2009 19:01
Localização: Belo Horizonte, MG
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.