• Anúncio Global
    Respostas
    Exibições
    Última mensagem

altura da torre

altura da torre

Mensagempor qscvrdxz » Ter Jun 02, 2009 19:21

Veja este exercício:

Uma pessoa de 1,60 m de altura, situada a 100 m de uma torre, avista o seu topo sob um ângulo de 35º com a horizontal. (Ela mede o ângulo com o auxílio de um teodolito). Qual a altura da torre?

Dúvidas:

1 - Essa horizontal que seria meu cateto adjacente está no chão ou está a 160 cm acima do chão?

2 - Caso meu cateto adjacente esteja realmente 160 cm acima do chão, para resolver o exercício eu simplesmente tenho de calcular a medida do cateto oposto ao ângulo de 35 º e adicionar 1,6?

Este enunciado me parece tão ambíguo, a tal da altura do observador complicou bastante este exercício pra mim, gostaria que alguém me explica-se como resolvê-lo.


Obrigado.
qscvrdxz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jun 02, 2009 19:01
Localização: Belo Horizonte, MG
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: altura da torre

Mensagempor Molina » Ter Jun 02, 2009 19:52

Fazendo um esboço do desenho, facilita bem as coisas.
Acho que você está no caminho certo..

Teríamos a formação de um triângulo, formado a cima de 1,60m, cujo lado parelelo ao chão mede 100m. O ângulo formado por este cateto com a hipotenusa, forma um ângulo de 35º. Teu objetivo é descobrir o valor do cateto oposto (ou seja, a altura da torre, com menos de 1,60).
Logo, calculando o valor do cateto oposto deve ser adicionado o valor de 1,60m (tamanho da pessoa observadora).

E agora, você acha que deverá que usar sen 35º ou cos 35º para resolver isto?
Veja a teoria dos dois casos para confirmar qual voce deve usar.


Abraços. Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: altura da torre

Mensagempor qscvrdxz » Ter Jun 02, 2009 23:15

Obrigado molina, minha dúvida éra o que fazer com a altura, mas como você confirmou minha linha de raciocínio estava correta, quanto ao cálculo das razões trigonométricas do triângulo retângulo eu estou tranquilo nesta área.
qscvrdxz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jun 02, 2009 19:01
Localização: Belo Horizonte, MG
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}