• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] - Indeterminação e Impossibilidade

[Limites] - Indeterminação e Impossibilidade

Mensagempor Scheu » Qui Fev 02, 2012 00:14

Ola! atualmente estou estudando o assunto Limites, inicialmente a resolução das primeira questões pareceram fáceis, contudo, tenho grandes dificuldades em resolver questões que ao final aparecem como respostas 0/0 ou k/0. Desta forma, peço ajuda no que tange a resolução de alguns exercícios referentes a esses assuntos:
1-f(x)=\frac{1}{x-1{}^{2}} onde devo achar o \lim_{x-1}. Tentando resolver cheguei a: \lim_{x-1}\frac{1}{x-1{}^{2}}\Rightarrow\lim_{x-1}\frac{1}{1-1}\Rightarrow\frac{1}{0}. Chegando nesse ponto o professor falou que constitui uma impossibilidade, mas que da para fazer através de jogo de sinais, entretanto ainda não consegui resolver.
2- Quanto as indeterminações, peço que me ajude exemplificando todos os métodos possíveis para resolve-las.
a) f(x)=\frac{x-1}{x-1}, onde \lim_{x\rightarrow1}f(x), resolvendo achei: \lim_{x\rightarrow1}=\frac{1-1}{1-1}=\frac{0}{0}\lim_{x\rightarrow1}=\frac{1-1}{1-1}=\frac{0}{0}
b)\lim_{z\rightarrow2}\frac{z{}^{3}-8}{z-2}, resolvendo achei: \lim_{z\rightarrow2}\frac{8-8}{2-2}=\frac{0}{0}
c)\lim_{x\rightarrow1}\frac{x-1}{x{}^{3}+x{}^{2}-2x}, resolvendo achei: \lim_{x\rightarrow1}\frac{1-1}{1+1-2}=\frac{0}{0}.

Desde já agradeço a ajuda
Atenciosamente,
Scheila Borges
Scheu
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Fev 01, 2012 23:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: [Limites] - Indeterminação e Impossibilidade

Mensagempor LuizAquino » Qui Fev 02, 2012 02:56

Scheu escreveu:1- f(x)=\frac{1}{x-1{}^{2}} onde devo achar o \lim_{x-1}. Tentando resolver cheguei a: \lim_{x-1}\frac{1}{x-1{}^{2}}\Rightarrow\lim_{x-1}\frac{1}{1-1}\Rightarrow\frac{1}{0}. Chegando nesse ponto o professor falou que constitui uma impossibilidade, mas que da para fazer através de jogo de sinais, entretanto ainda não consegui resolver.


Eu presumo que a função seja f(x)=\frac{1}{(x-1)^2} . Além disso, que o limite seja \lim_{x\to 1} f(x) .

Como você já percebeu, quando x\to 1, temos que (x-1)^2 \to 0 . Sendo assim, temos que:

\lim_{x\to 1} \frac{1}{(x-1)^2} = +\infty

Eu recomendo que você assista a vídeo-aula " 05. Cálculo I - Limites Infinitos" disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino

Scheu escreveu:2- Quanto as indeterminações, peço que me ajude exemplificando todos os métodos possíveis para resolve-las.

a) f(x)=\frac{x-1}{x-1}, onde \lim_{x\rightarrow 1}f(x), resolvendo achei: \lim_{x\rightarrow 1}=\frac{1-1}{1-1}=\frac{0}{0}

b) \lim_{z\rightarrow 2}\frac{z{}^{3}-8}{z-2}, resolvendo achei: \lim_{z\rightarrow 2}\frac{8-8}{2-2}=\frac{0}{0}

c) \lim_{x\rightarrow 1}\frac{x-1}{x^3+x^2-2x}, resolvendo achei: \lim_{x\rightarrow1}\frac{1-1}{1+1-2}=\frac{0}{0}.


a) Qualquer número (exceto o zero) dividido por ele mesmo é igual a 1. Ou seja, \frac{a}{a} é sempre igual a 1 (exceto quando a = 0). Desse modo, temos que:

\lim_{x\rightarrow 1} \frac{x-1}{x-1} = \lim_{x\rightarrow 1} 1 = 1

b) Usando o produto notável a^3 - b^3 = (a-b)\left(a^2+ab+b^2\right), temos que:

\lim_{z\to 2}\frac{z^3-8}{z-2} = \lim_{z\rightarrow 2}\frac{z^3-2^3}{z-2}

= \lim_{z\to 2}\frac{(z-2)\left(z^2 + 2z + 4\right)}{z-2}

= \lim_{z\to 2} z^2 + 2z + 4

= 2^2 + 2\cdot 2 + 4 = 12

c) Fatorando o polinômio que aparece no denominador, temos que:

\lim_{x\to 1}\frac{x-1}{x^3+x^2-2x} = \lim_{x\to 1}\frac{x-1}{x\left(x^2+x-2\right)}

= \lim_{x\to 1}\frac{x-1}{x(x-1)(x+2)}

= \lim_{x\to 1}\frac{1}{x(x+2)}

= \frac{1}{1\cdot (1+2)} = \frac{1}{3}


Observação

Por questão de organização do fórum, nós recomendamos que em cada tópico haja apenas um exercício.

Além disso, vale lembrar que não é objetivo do fórum resolver listas de exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limites] - Indeterminação e Impossibilidade

Mensagempor Scheu » Sex Fev 03, 2012 00:03

LuizAquino escreveu:
Scheu escreveu:1- f(x)=\frac{1}{x-1{}^{2}} onde devo achar o \lim_{x-1}. Tentando resolver cheguei a: \lim_{x-1}\frac{1}{x-1{}^{2}}\Rightarrow\lim_{x-1}\frac{1}{1-1}\Rightarrow\frac{1}{0}. Chegando nesse ponto o professor falou que constitui uma impossibilidade, mas que da para fazer através de jogo de sinais, entretanto ainda não consegui resolver.


Eu presumo que a função seja f(x)=\frac{1}{(x-1)^2} . Além disso, que o limite seja \lim_{x\to 1} f(x) .

Como você já percebeu, quando x\to 1, temos que (x-1)^2 \to 0 . Sendo assim, temos que:

\lim_{x\to 1} \frac{1}{(x-1)^2} = +\infty

Eu recomendo que você assista a vídeo-aula " 05. Cálculo I - Limites Infinitos" disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino

Scheu escreveu:2- Quanto as indeterminações, peço que me ajude exemplificando todos os métodos possíveis para resolve-las.

a) f(x)=\frac{x-1}{x-1}, onde \lim_{x\rightarrow 1}f(x), resolvendo achei: \lim_{x\rightarrow 1}=\frac{1-1}{1-1}=\frac{0}{0}

b) \lim_{z\rightarrow 2}\frac{z{}^{3}-8}{z-2}, resolvendo achei: \lim_{z\rightarrow 2}\frac{8-8}{2-2}=\frac{0}{0}

c) \lim_{x\rightarrow 1}\frac{x-1}{x^3+x^2-2x}, resolvendo achei: \lim_{x\rightarrow1}\frac{1-1}{1+1-2}=\frac{0}{0}.


a) Qualquer número (exceto o zero) dividido por ele mesmo é igual a 1. Ou seja, \frac{a}{a} é sempre igual a 1 (exceto quando a = 0). Desse modo, temos que:

\lim_{x\rightarrow 1} \frac{x-1}{x-1} = \lim_{x\rightarrow 1} 1 = 1

b) Usando o produto notável a^3 - b^3 = (a-b)\left(a^2+ab+b^2\right), temos que:

\lim_{z\to 2}\frac{z^3-8}{z-2} = \lim_{z\rightarrow 2}\frac{z^3-2^3}{z-2}

= \lim_{z\to 2}\frac{(z-2)\left(z^2 + 2z + 4\right)}{z-2}

= \lim_{z\to 2} z^2 + 2z + 4

= 2^2 + 2\cdot 2 + 4 = 12

c) Fatorando o polinômio que aparece no denominador, temos que:

\lim_{x\to 1}\frac{x-1}{x^3+x^2-2x} = \lim_{x\to 1}\frac{x-1}{x\left(x^2+x-2\right)}

= \lim_{x\to 1}\frac{x-1}{x(x-1)(x+2)}

= \lim_{x\to 1}\frac{1}{x(x+2)}

= \frac{1}{1\cdot (1+2)} = \frac{1}{3}


Observação

Por questão de organização do fórum, nós recomendamos que em cada tópico haja apenas um exercício.

Além disso, vale lembrar que não é objetivo do fórum resolver listas de exercício.


Muito Obrigada pela Ajuda! Valeu
Scheu
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Fev 01, 2012 23:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)