• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor Profeta » Qui Jan 26, 2012 23:13

Boa noite peço ajuda na correção

Calcular f^\prime(0),  se f(x)=e^{-x}cos 3x.

Resp: f^\prime(x)=e^{-x}cos 3x-(3cos3x).(sen3x . e^{-x}) \Rightarrow f^\prime(x)=-1.cos 0-(3cos0).(sen0 . 1) \Rightarrow f^\prime(0)=-1

desde já agradeço
Profeta
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Jan 26, 2012 14:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: cursando

Re: Derivadas

Mensagempor Molina » Sex Jan 27, 2012 00:23

Está correto.

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Derivadas

Mensagempor ant_dii » Sex Jan 27, 2012 03:21

Não sei se foi erro de digitação, mas na hora de estudar limites, derivadas e integrais, cuide muito do sinal, pois ele pode trazer complicações...

Digo isso como dica, pois você escreveu assim
Profeta escreveu:Resp: f^\prime(x)=e^{-x}cos 3x-(3cos3x).(sen3x . e^{-x})


Mas, o limite deve ser calculado da seguinte forma:

f(x)=e^{-x}\cos (3x) \Rightarrow f^\prime(x)= \frac{d}{dx}(e^{-x}\cos (3x))= \left(\frac{d e^{-x}}{dx}\right)\cos (3x)+ e^{-x}\left(\frac{d \cos (3x)}{dx}\right)=\\ \\ = -e^{-x}\cos (3x)+e^{-x}(-3 \sin (3x))=-e^{-x}\cos (3x)-3e^{-x}\sin (3x)=\frac{-\cos (3x)-3\sin (3x)}{e^x}

É só uma dica, já que você está tão empenhado e não desejo que desista ou se sinta frustado diante de um resultado que nunca bate...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59