por joserd » Qua Jan 25, 2012 21:17
Seja R a região delimitada pelos gráficos de x=y^2 e x=9. Determine o volume do sólido S que tem R como base , e tal que toda seção transversal por um plano perpendicular ao eixo Ox seja um triangulo equilátero. Esboce o sólido.
Consegui apenas encontrar os pontos comuns e fazer os gráficos da área . Não tenho ideia de como clacular o volume e do esboço do sólido.
-
joserd
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Set 16, 2011 20:57
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: analise
- Andamento: formado
por LuizAquino » Qui Jan 26, 2012 00:32
joserd escreveu:Seja R a região delimitada pelos gráficos de x=y^2 e x=9. Determine o volume do sólido S que tem R como base , e tal que toda seção transversal por um plano perpendicular ao eixo Ox seja um triangulo equilátero. Esboce o sólido.
joserd escreveu:Consegui apenas encontrar os pontos comuns e fazer os gráficos da área . Não tenho ideia de como clacular o volume e do esboço do sólido.
As figuras abaixo ilustram a região R e o sólido S.

- região_R.png (10.17 KiB) Exibido 776 vezes

- sólido_S.png (33.16 KiB) Exibido 776 vezes
Para determinar o volume de S, comece determinando a área A do triângulo equilátero destacado em função da posição x.
Para isso, note que

.
Desse modo, temos que a área A é dada por:

Enxergando a área A como uma função de x, temos que o volume V de S será dado por:



-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Volume do Solido
por leha » Qui Dez 10, 2009 10:22
- 3 Respostas
- 3251 Exibições
- Última mensagem por leha

Seg Dez 14, 2009 13:44
Cálculo: Limites, Derivadas e Integrais
-
- Volume de sólido
por Manoella » Seg Fev 21, 2011 23:41
- 1 Respostas
- 2362 Exibições
- Última mensagem por LuizAquino

Ter Fev 22, 2011 11:38
Cálculo: Limites, Derivadas e Integrais
-
- volume de um sólido
por Andreza » Seg Nov 14, 2011 14:26
- 7 Respostas
- 8273 Exibições
- Última mensagem por Andreza

Sex Nov 25, 2011 10:05
Geometria Espacial
-
- volume de um sólido
por Priscila_moraes » Dom Dez 04, 2011 18:55
- 2 Respostas
- 2600 Exibições
- Última mensagem por LuizAquino

Dom Dez 04, 2011 19:56
Cálculo: Limites, Derivadas e Integrais
-
- volume de um sólido
por ah001334 » Ter Dez 20, 2011 10:47
- 1 Respostas
- 1736 Exibições
- Última mensagem por LuizAquino

Ter Dez 20, 2011 11:24
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.