• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Volume e Esboço do sólido - x=y^2 e x=9

Volume e Esboço do sólido - x=y^2 e x=9

Mensagempor joserd » Qua Jan 25, 2012 21:17

Seja R a região delimitada pelos gráficos de x=y^2 e x=9. Determine o volume do sólido S que tem R como base , e tal que toda seção transversal por um plano perpendicular ao eixo Ox seja um triangulo equilátero. Esboce o sólido.
Consegui apenas encontrar os pontos comuns e fazer os gráficos da área . Não tenho ideia de como clacular o volume e do esboço do sólido.
joserd
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Set 16, 2011 20:57
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: analise
Andamento: formado

Re: Volume e Esboço do sólido - x=y^2 e x=9

Mensagempor LuizAquino » Qui Jan 26, 2012 00:32

joserd escreveu:Seja R a região delimitada pelos gráficos de x=y^2 e x=9. Determine o volume do sólido S que tem R como base , e tal que toda seção transversal por um plano perpendicular ao eixo Ox seja um triangulo equilátero. Esboce o sólido.


joserd escreveu:Consegui apenas encontrar os pontos comuns e fazer os gráficos da área . Não tenho ideia de como clacular o volume e do esboço do sólido.


As figuras abaixo ilustram a região R e o sólido S.

região_R.png
região_R.png (10.17 KiB) Exibido 806 vezes


sólido_S.png
sólido_S.png (33.16 KiB) Exibido 806 vezes


Para determinar o volume de S, comece determinando a área A do triângulo equilátero destacado em função da posição x.

Para isso, note que L = 2\sqrt{x} .

Desse modo, temos que a área A é dada por:

A = \frac{L^2\sqrt{3}}{4} = x\sqrt{3}

Enxergando a área A como uma função de x, temos que o volume V de S será dado por:

V = \int_0^9 A(x)\, dx

V = \int_0^9 x\sqrt{3}\, dx

V = \frac{81}{2}\sqrt{3}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.