por lipelfnc » Qua Jan 25, 2012 20:16
Primeiros dois exercícios, "de calcular mesmo", do guidorizzi que empaquei. De resto, só os de demonstração que estão me pegando mesmo.

Tentei substituir tgx = senx/cosx, mas travei quando corta os cosx
No gabarito diz que o resultado é 0.

Nesse tentei de vários jeitos, inclusive com a propriedade do limite fundamental.
E obrigado pelas dicas quanto aos exercícios de demonstração.
-
lipelfnc
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Jan 24, 2012 14:10
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng/Programação
- Andamento: formado
por lipelfnc » Qua Jan 25, 2012 22:23
Nossa, obrigado.
Nunca que eu iria pensar em dividir por x na primeira, e fazer aquela substituição na segunda.
Assim, qual é o segredo para ter essas sacadas? Só a experiência mesmo?
Alguns colegas recomendaram que eu desse uma estudada pelo Apostol. Sei que ele é bem puxado, mas vcs recomendariam para alguem que estará cursando Engenharia?
-
lipelfnc
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Jan 24, 2012 14:10
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng/Programação
- Andamento: formado
por LuizAquino » Qua Jan 25, 2012 22:46
lipelfnc escreveu:Assim, qual é o segredo para ter essas sacadas? Só a experiência mesmo?
Sim, com a experiência essas simplificações se tornam naturais.
lipelfnc escreveu:Alguns colegas recomendaram que eu desse uma estudada pelo Apostol. Sei que ele é bem puxado, mas vcs recomendariam para alguem que estará cursando Engenharia?
Para um aluno do curso de Engenharia, eu recomendo a referência abaixo.
- Stewart, James. Cálculo. Vol. I. 6ª Edição. São Paulo: Thomson Pioneira, 2009.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dificuldade em exercícios de demonstração
por lipelfnc » Ter Jan 24, 2012 14:34
- 3 Respostas
- 2704 Exibições
- Última mensagem por fraol

Ter Jan 24, 2012 19:15
Cálculo: Limites, Derivadas e Integrais
-
- [Elipse, hipérbole, parábola] Dificuldade em exercícios!
por geo_nascimento » Dom Out 23, 2011 15:47
- 1 Respostas
- 4838 Exibições
- Última mensagem por LuizAquino

Seg Out 24, 2011 16:33
Geometria Analítica
-
- Demonstração de exercícios
por andrecezar » Qui Mai 18, 2017 00:06
- 0 Respostas
- 2042 Exibições
- Última mensagem por andrecezar

Qui Mai 18, 2017 00:06
Conjuntos
-
- [Álgebra I, exercicios] Exercicios que estão sem resolução.
por vitorullmann » Ter Mar 05, 2013 21:26
- 0 Respostas
- 2769 Exibições
- Última mensagem por vitorullmann

Ter Mar 05, 2013 21:26
Álgebra Elementar
-
- Dificuldade
por Alison Bissoli » Qui Dez 03, 2009 13:40
- 6 Respostas
- 3588 Exibições
- Última mensagem por Elcioschin

Dom Dez 06, 2009 13:54
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.