• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade em exercícios de demonstração

Dificuldade em exercícios de demonstração

Mensagempor lipelfnc » Qua Jan 25, 2012 20:16

Primeiros dois exercícios, "de calcular mesmo", do guidorizzi que empaquei. De resto, só os de demonstração que estão me pegando mesmo.

\lim_{x \rightarrow 0}\frac{x - tgx}{x + tgx}

Tentei substituir tgx = senx/cosx, mas travei quando corta os cosx
No gabarito diz que o resultado é 0.

\lim_{x \rightarrow 1}\frac{sen (x\pi)}{x - 1}
Nesse tentei de vários jeitos, inclusive com a propriedade do limite fundamental.


E obrigado pelas dicas quanto aos exercícios de demonstração.
lipelfnc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 24, 2012 14:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng/Programação
Andamento: formado

Re: Dificuldade em exercícios de demonstração

Mensagempor LuizAquino » Qua Jan 25, 2012 20:41

lipelfnc escreveu:\lim_{x \to 0}\frac{x - \textrm{tg}\,x}{x + \textrm{tg}\,x}

Tentei substituir tgx = senx/cosx, mas travei quando corta os cosx
No gabarito diz que o resultado é 0.


\lim_{x \to 0}\frac{x - \textrm{tg}\,x}{x + \textrm{tg}\,x} = \lim_{x \to 0} \frac{x - \frac{\textrm{sen}\,x}{\cos x}}{x + \frac{\textrm{sen}\,x}{\cos x}}

= \lim_{x \to 0} \frac{x\cos x - \textrm{sen}\,x}{x\cos x + \textrm{sen}\,x}

= \lim_{x \to 0} \frac{(x\cos x - \textrm{sen}\,x) : x}{(x\cos x + \textrm{sen}\,x) : x}

= \lim_{x \to 0} \frac{\cos x - \frac{\textrm{sen}\,x}{x}}{\cos x + \frac{\textrm{sen}\,x}{x}}

= \frac{1 - 1}{1 + 1} = 0


lipelfnc escreveu:\lim_{x \to 1}\frac{\textrm{sen}\,(x\pi)}{x - 1}
Nesse tentei de vários jeitos, inclusive com a propriedade do limite fundamental.


Fazendo a substituição u = x - 1, quando x\to 1 temos que u\to 0 .

Nesse caso, temos que:

\lim_{x \to 1}\frac{\textrm{sen}\,(x\pi)}{x - 1} = \lim_{u \to 0}\frac{\textrm{sen}\,[(u+1)\pi]}{u}

= \lim_{u \to 0}\frac{\textrm{sen}\,(u\pi)\cos \pi + \textrm{sen}\,\pi\cos (u\pi)}{u}

= \lim_{u \to 0}\frac{-\textrm{sen}\,(u\pi) }{u}

= \lim_{u \to 0}\frac{-\textrm{sen}\,(u\pi) }{u} \cdot \frac{\pi}{\pi}

= \lim_{u \to 0}(-\pi)\frac{\textrm{sen}\,(u\pi) }{u\pi}

= -\pi

Observação

Tente justificar que:

\lim_{u \to 0} \frac{\textrm{sen}\,(u\pi) }{u\pi} = 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dificuldade em exercícios de demonstração

Mensagempor lipelfnc » Qua Jan 25, 2012 22:23

Nossa, obrigado.
Nunca que eu iria pensar em dividir por x na primeira, e fazer aquela substituição na segunda.

Assim, qual é o segredo para ter essas sacadas? Só a experiência mesmo?

Alguns colegas recomendaram que eu desse uma estudada pelo Apostol. Sei que ele é bem puxado, mas vcs recomendariam para alguem que estará cursando Engenharia?
lipelfnc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 24, 2012 14:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng/Programação
Andamento: formado

Re: Dificuldade em exercícios de demonstração

Mensagempor LuizAquino » Qua Jan 25, 2012 22:46

lipelfnc escreveu:Assim, qual é o segredo para ter essas sacadas? Só a experiência mesmo?


Sim, com a experiência essas simplificações se tornam naturais.

lipelfnc escreveu:Alguns colegas recomendaram que eu desse uma estudada pelo Apostol. Sei que ele é bem puxado, mas vcs recomendariam para alguem que estará cursando Engenharia?


Para um aluno do curso de Engenharia, eu recomendo a referência abaixo.

  • Stewart, James. Cálculo. Vol. I. 6ª Edição. São Paulo: Thomson Pioneira, 2009.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}