• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de ângulos

Cálculo de ângulos

Mensagempor Camila Z » Ter Jan 17, 2012 14:50

Sabendo que os lados de um triãngulo "não retângulo" medem 3, \sqrt[]{3}, 2\sqrt[]{3}, calcular os ângulos...
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Cálculo de ângulos

Mensagempor ant_dii » Ter Jan 17, 2012 15:30

Uma saída é usar a lei dos cossenos, ou seja,

a^2=b^2+c^2-2b\cdot c \cdot \cos\widehat{A}
b^2=a^2+c^2-2a\cdot c \cdot \cos\widehat{B}
c^2=a^2+b^2-2a\cdot b \cdot \cos\widehat{C}

Neste caso, basta usar a=2\sqrt{3}, b=\sqrt{3} e c=3.

Lembre-se que \widehat{A}+\widehat{B}+\widehat{C}=180.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Cálculo de ângulos

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 15:34

Camila Z escreveu:Sabendo que os lados de um triãngulo "não retângulo" medem 3, \sqrt[]{3}, 2\sqrt[]{3}, calcular os ângulos...

Olá Camila Z.
Basta utilizar a lei dos cossenos.

3^2 = (\sqrt3)^2 + (2\sqrt3)^2 - 2(\sqrt3)(2\sqrt3).cos(\alpha) \Rightarrow cos(\alpha) = \frac 12 \Rightarrow \alpha = 60

(\sqrt3)^2 = (3)^2 + (2\sqrt3)^2 - 2(3)(2\sqrt3).cos(\beta) \Rightarrow cos(\beta) = \frac{3}{2\sqrt3} \Rightarrow cos(\beta) = \frac {\sqrt3}{2} \Rightarrow \beta = 30

(2\sqrt3)^2 = (3)^2 + (\sqrt3)^2 - 2(3)(\sqrt3)cos(\gamma)  \Rightarrow cos(\gamma) = 0 \Rightarrow \gamma = 90
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cálculo de ângulos

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 15:35

Desculpa ant_dii.
Não vi que a questão já havia sido respondida.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cálculo de ângulos

Mensagempor ant_dii » Ter Jan 17, 2012 15:44

Sem problemas Arkanus, mas acho que o enunciado da questão da Camila esta errado, ou com algum problema, pois diz que o triângulo não é retângulo...

Camila, por favor, verifique o enunciado...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Cálculo de ângulos

Mensagempor Camila Z » Ter Jan 17, 2012 16:09

Obrigada gente! O enunciado que me foi pedido é esse mesmo, deve estar errado... vou informá-los! :y:
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.