• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade com rasteira

Probabilidade com rasteira

Mensagempor joaofonseca » Sáb Jan 07, 2012 11:22

Sejam A,B e C três caixas iguais.Em cada uma foram colocadas 10 bolas, umas verdes outras amarelas.
A distribuição é a seguinte:

Caixa A:
Bolas amarelas: 5
Bolas verdes: 5

Caixa B:
Bolas amarelas: 2
Bolas verdes: 8

Caixa C:
Bolas amarelas: 6
Bolas verdes: 4

Escolhendo aleatoriamente uma caixa, qual é a probabilidade de tirar uma bola verde?

Se fosse uma probabilidade condicional, do tipo, qual a probabilidade de tirar bola verde sabendo que se tirou da caixa A, seria facil.Pois os casos favoraveis limitavam-se às bolas verdes que estão na caixa A.
Se eu fizer 3 probabilidades condicionadas, cada uma relativa a tirar uma bola de cada uma das caixas, então basta somar as 3 probabilidades condicionadas.Mas isto é a mesma coisa se as 30 bolas estivessem numa unica caixa.Logo:

P(V)=\frac{5+8+4}{30}=\frac{17}{30}

Será assim?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Probabilidade com rasteira

Mensagempor Arkanus Darondra » Sáb Jan 07, 2012 12:35

Olá joaofonseca,
Embora você tenha chegado à resposta correta, o método que você utilizou não é o "mais correto"
Você chegou à resposta correta porque o número de bolas em cada caixa é o mesmo

Para este tipo de exercício você deve calcular a probabilidade do que se quer, separadamente, e somá-las P(V)
Depois disso, calcular a probabilidade de se escolher uma caixa ao acaso P(C)
Após isso, basta fazer P(V) . P(C) , ou seja, \frac {17}{10} . \frac {1}{3}
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Probabilidade com rasteira

Mensagempor fraol » Sáb Jan 07, 2012 17:59

Concordo com o raciocínio do joaofonseca. Explicitamente teríamos: \frac{1}{3}.\frac{5}{10} + \frac{1}{3}.\frac{8}{10} + \frac{1}{3}.\frac{4}{10} , que é basicamente o que foi dito em
Se eu fizer 3 probabilidades condicionadas, cada uma relativa a tirar uma bola de cada uma das caixas, então basta somar as 3 probabilidades condicionadas.


Arkanus, você colocou probabilidade de \frac{17}{10} , mas probabilidade, por definição é um número entre 0 e 1.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Probabilidade com rasteira

Mensagempor Arkanus Darondra » Sáb Jan 07, 2012 18:54

fraol escreveu:Concordo com o raciocínio do joaofonseca. Explicitamente teríamos: \frac{1}{3}.\frac{5}{10} + \frac{1}{3}.\frac{8}{10} + \frac{1}{3}.\frac{4}{10} , que é basicamente o que foi dito em
Se eu fizer 3 probabilidades condicionadas, cada uma relativa a tirar uma bola de cada uma das caixas, então basta somar as 3 probabilidades condicionadas.


Concordo, porém ele também afirma:
"(...)isto é a mesma coisa se as 30 bolas estivessem numa unica caixa".
fraol escreveu:Arkanus, você colocou probabilidade de \frac{17}{10} , mas probabilidade, por definição é um número entre 0 e 1.

Concordo, o meu erro foi chamar a soma das probabilidades de P(V), foi um descuido.
Supondo somar 0,8 e 0,7, por exemplo, que são números entre 0 e 1, teremos um número maior que um.

Obrigado pela observação. :y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}