• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do quadrado

Área do quadrado

Mensagempor Andreza » Ter Jan 03, 2012 10:43

Sobre um quadrado ABCD, de lado de 4cm, determinamos os pontos M,N,P e Q de tal forma que AM=BN=CP=DQ=x. Qual é a área de MNPQ, em centímetros quadrados e em função de x?


Calculando a área separadamente do quadrando cincunscrito tenho 16cm².
Aplicando teorema de pitágoras tenho L= 4+x
Como faço pra encontrar a coesão das ideias e juntar para montar a resposta?

Dede já agradeço.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Área do quadrado

Mensagempor Andreza » Ter Jan 03, 2012 11:18

Estou tentando resolver ele aqui e encontrei \left(4+x \right)² = x² + 8x+16.
Porém nao é esta a resposta correta q está no gabarito da FCC.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Área do quadrado

Mensagempor fraol » Ter Jan 03, 2012 13:54

Oi Andreza,

Veja se este desenvolvimento confere:

Chamando de L o lado do paralelogramo formado conforme o enunciado então a área de MNPQ será L^2.

L^2 sai por Pitágoras ao analisarmos o triângulo, por exemplo, AMQ que terá hipotenusa L e catetos x e 4 -x, então:

L^2 = x^2 + (4-x)^2 \iff L^2 = x^2 + 16 -8x + x^2 e, portanto:

L^2 = 2x^2 -8x + 16 .

Ok?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.