• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação modular] Duas "parcelas"

[Equação modular] Duas "parcelas"

Mensagempor renato9 » Dom Dez 25, 2011 15:27

Como resolver equações modulares quando existem duas "parcelas"? Tentei usar a definição de módulo, mas acho que não é o método mais adequado.
Segue a equação-exemplo:
\left|x-2 \right| - \left|2x-1 \right| = -1
renato9
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Dez 25, 2011 15:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação modular] Duas "parcelas"

Mensagempor fraol » Dom Dez 25, 2011 20:24

Olá Renato,

Uma forma de você resolver seria por intermédio da construção do gráfico de cada uma das funções e verificar os x nos quais ocorre a intersecção dos gráficos, mas pela definição também sai, tem que sair, só que deve-se aplicá-la duas vezes, uma para cada equação modular, vamos obter assim 4 equações, depois de resolvê-las validamos as respostas eliminando, eventualmente, as que não satisfazem a equação original.

Valeu?
Francisco.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Equação modular] Duas "parcelas"

Mensagempor renato9 » Dom Dez 25, 2011 21:42

Obrigado pela atenção, Francisco.
Resolvendo, fiz o seguinte:
\left|x-2 \right|-\left|2x-1 \right|=-1
Imagem

Mas deve haver algum erro, pois do resultado, somente um elemento (-2) serve como solução, contrariando, assim, o gabarito oficial, que coloca na resposta a existência de dois elementos como solução, com x \epsilon R. Há algum erro no procedimento?

Grato.
renato9
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Dez 25, 2011 15:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação modular] Duas "parcelas"

Mensagempor fraol » Dom Dez 25, 2011 22:08

Apliquei a definição em

|x-2| = |2x -1| - 1 da seguinte forma:

(1a) x-2 = 2x -1 -1 \iff x = 0

(1b) x-2 = -2x +1 - 1 \iff 3x = 2 \iff x = 2 / 3

(2a) -x + 2 = 2x -1 -1 \iff 3x = 4 \iff x = 4 /3

(2b) -x + 2 =  -2x +1 - 1 \iff x = -2

Testando os valores encontrados vemos que a solução é x = -2 ou x = 4 / 3

O que você acha?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Equação modular] Duas "parcelas"

Mensagempor renato9 » Dom Dez 25, 2011 22:14

Pensei nisso e havia achado também o \frac{4}{3}. O problema é que se houvesse três ou mais "parcelas", tornaria o processo bastante trabalhoso.
Alguma sugestão em relação a isso?

Obrigado.
renato9
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Dez 25, 2011 15:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação modular] Duas "parcelas"

Mensagempor fraol » Dom Dez 25, 2011 22:29

Oi Renato,

Não vejo saída nesses casos, ou plotamos as funções modulares num software e pegamos as intersecções ou desenvolvemos as equações através da aplicação da definição - nesses casos serão 2^n equações, sendo n o número de módulos na expressão original.

Se algum outro colega que nos lê tiver alguma alternativa manda pra gente.

Abç,
Francisco.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Equação modular] Duas "parcelas"

Mensagempor renato9 » Dom Dez 25, 2011 22:39

É isso, Francisco. A utilização da definição em casos de mais parcelas seria inviável na ocasião de uma prova com muitas questões e pouco tempo. É bastante possível para essa questão, no entanto. Obrigado pela ajuda e vamos aguardar alguma sugestão de outro colega.

Abraços.
renato9
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Dez 25, 2011 15:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59