• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TECNICAS DE INTEGRAÇÃO

TECNICAS DE INTEGRAÇÃO

Mensagempor Marcio Cristo » Qui Dez 22, 2011 18:35

Boa tarde , como ficaria a seguinte integral? A minha duvida é por onde começar e como ficaria a fatoração do polinomio que está no denominador . Se puder fazer um passo a passo . Agradeço desde ja .

f(x)=\int(x+4)/(x^2+2x+5)
Marcio Cristo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Dez 22, 2011 18:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: TECNICAS DE INTEGRAÇÃO

Mensagempor LuizAquino » Qui Dez 22, 2011 22:01

Marcio Cristo escreveu:Boa tarde , como ficaria a seguinte integral? A minha duvida é por onde começar e como ficaria a fatoração do polinomio que está no denominador . Se puder fazer um passo a passo . Agradeço desde ja.

f(x)=\int(x+4)/(x^2+2x+5)


Para estudar a resolução dessa integral, siga o procedimento abaixo.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate (x+4)/(x^2+2x+5) dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.

Observação

Se você desejar revisar as técnicas de integração, então eu gostaria de recomendar que você assista as vídeo-aulas disponíveis em meu canal no YouTube:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: TECNICAS DE INTEGRAÇÃO

Mensagempor Marcio Cristo » Qui Dez 22, 2011 22:23

Boa noite, obrigado pelo feeedback , Luiz , noto que x+4/x^2+2x+5 foi reescrito na forma de 2x+2 / 2( x^2+2x+5) + 3/x^2+2x+5 , qual a tecnica usada para essa transformação de polinomios ??? como ele chegou a tal ???
Marcio Cristo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Dez 22, 2011 18:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: TECNICAS DE INTEGRAÇÃO

Mensagempor LuizAquino » Qui Dez 22, 2011 22:49

Marcio Cristo escreveu:noto que x+4/x^2+2x+5 foi reescrito na forma de 2x+2 / 2( x^2+2x+5) + 3/x^2+2x+5 , qual a tecnica usada para essa transformação de polinomios ???


Note que:

\frac{x+4}{x^2+2x+5} = \frac{x + 1 + 3}{x^2+2x+5} = \frac{x + 1}{x^2+2x+5} + \frac{3}{x^2+2x+5} = \frac{2x + 2}{2\left(x^2+2x+5\right)} + \frac{3}{x^2+2x+5}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: TECNICAS DE INTEGRAÇÃO

Mensagempor Marcio Cristo » Sex Dez 23, 2011 17:36

entendi , agora , qual a finalidade de ter multiplicado a primeira expressão toda por 2 ?? não poderia integrar com aquele polinomio x+1 ??
Marcio Cristo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Dez 22, 2011 18:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: TECNICAS DE INTEGRAÇÃO

Mensagempor LuizAquino » Sex Dez 23, 2011 18:00

Marcio Cristo escreveu:qual a finalidade de ter multiplicado a primeira expressão toda por 2 ?? não poderia integrar com aquele polinomio x+1 ??


A finalidade foi de "facilitar" o uso da integração por substituição.

Note que fazendo u=x^2 + 2x + 5 e du=2x + 2\, dx , temos que :

\int \frac{2x+2}{2\left(x^2 + 2x + 5\right)}\, dx = \int \frac{1}{2u}\, du

Obviamente, também poderíamos utilizar essa mesma substituição sem usar esse artifício de multiplicar a priori por 2.

Note que podemos reescrever du=2x + 2\, dx como sendo \frac{1}{2}du=x + 1\, dx . Nesse caso, podemos escrever diretamente que:

\int \frac{x+1}{x^2 + 2x + 5}\, dx = \int \frac{1}{2u}\, du
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}