• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[equaçoes diferenciais] EDO 1ªordem homogenea

[equaçoes diferenciais] EDO 1ªordem homogenea

Mensagempor paula luna » Qui Dez 01, 2011 03:35

Oi estou com muita dificuldade com esta questao, se alguem conseguir resolve-la por favor poste a resoluçao. Segue abaixo a questao com resposta e tambem o que eu tentei.

Questao: \frac{dy}{dx} = \frac{y}{x}.ln\left(\frac{y}{x} \right)

Resposta: 1 - ln\left|\frac{y}{x} \right| = \frac{x}{C}

Minha tentativa: Bem, antes de botar as expressoes eu queria tambem perguntar se esta questao tambem nao poderia ser feita por 'variaveis separaveis' diretamente.

Trocando-se
dy = u.dx + x.du
y = ux

\frac{\left(udx + xdu \right)}{dx} = u.ln(u)
Arrumando...

u + \frac{xdu}{dx} = u.ln(u)

\frac{dx}{x} -\frac{du}{u.\left(ln(u) -1 \right)} = 0
Aplicando a integral nos 2 lados:

\int_{}^{}\frac{dx}{x} - \int_{}^{}-\frac{du}{u.\left(ln(u) -1 \right)} = C
Calculando ...

ln(x) - ln\left|ln(u) -1 \right| = C
Daqui pra frente eu usei propriedade de log e exponencial pra tranfsrmar a subtraçao de logs em divisao e poder retirar uma das logs ( meio confuso mas acho que da pra intender aqui embaixo)

ln\left|\frac{ln(u) - 1}{x} \right| = C

\left|\frac{ln(u) - 1}{x} \right| = {e}^{C}

ln|u| = |x| . {e}^{C}+1

Voltando com y :
ln\left|\frac{y}{x} \right| = |x|.{e}^{C} +1

parei aqui

:y: por quem leu, quem tentou, quem conseguiu ....
Obs.: eu escrevi ln(u) varias vezes mas era ln|u| :n:
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [equaçoes diferenciais] EDO 1ªordem homogenea

Mensagempor LuizAquino » Sex Dez 02, 2011 18:36

paula luna escreveu:Oi estou com muita dificuldade com esta questao, se alguem conseguir resolve-la por favor poste a resoluçao. Segue abaixo a questao com resposta e tambem o que eu tentei.

Questao: \frac{dy}{dx} = \frac{y}{x}.ln\left(\frac{y}{x} \right)

Resposta: 1 - ln\left|\frac{y}{x} \right| = \frac{x}{C}


paula luna escreveu:Minha tentativa: Bem, antes de botar as expressoes eu queria tambem perguntar se esta questao tambem nao poderia ser feita por 'variaveis separaveis' diretamente.


Não poderia.

paula luna escreveu:Trocando-se
dy = u.dx + x.du
y = ux
\frac{\left(udx + xdu \right)}{dx} = u.ln(u)


Ok.

paula luna escreveu:Arrumando...

u + \frac{xdu}{dx} = u.ln(u)

\frac{dx}{x} -\frac{du}{u.\left(ln(u) -1 \right)} = 0


Ok.

paula luna escreveu:Aplicando a integral nos 2 lados:

\int \frac{dx}{x} - \int -\frac{du}{u.\left(ln(u) -1 \right)} = C
Calculando ...

ln(x) - ln\left|ln(u) -1 \right| = C


Apenas corrigindo:

\int \frac{dx}{x} - \int \frac{du}{u\left(\ln(u) -1 \right)} = C \Rightarrow \ln|x| - \ln \left|\ln(u) - 1\right| = D

Obs. 1: Lembre-se que ao calcular as duas integrais surgirão duas novas constantes, que irão subtrair C dando origem a uma outra constante D.

paula luna escreveu:Daqui pra frente eu usei propriedade de log e exponencial pra tranfsrmar a subtraçao de logs em divisao e poder retirar uma das logs ( meio confuso mas acho que da pra intender aqui embaixo)

ln\left|\frac{ln(u) - 1}{x} \right| = C


Errado. O correto seria:

\ln|x| - \ln \left|\ln(u) - 1\right| = D \Rightarrow \ln\left|\frac{x}{\ln(u) - 1} \right| = D

Disso temos que:

\left|\frac{x}{\ln(u) - 1}\right| = e^D

\frac{x}{\ln(u) - 1} = \pm e^D

Note que \pm e^D é uma constante. Vamos chamá-la de E.

Desse modo, temos que:

\frac{x}{\ln(u) - 1} = E

\frac{x}{E} = \ln(u) - 1

1 - \ln(u) = -\frac{x}{E}

Lembrando que u=\frac{y}{x} e chamando a constante -\frac{1}{E} de F , temos que:

1 - \ln\left(\frac{y}{x}\right) = \frac{x}{F}

Obs. 2: Vale lembrar que o "nome" que damos as constantes não importa. A cada passo você pode chamá-las de tal modo que no fim a resposta fique no formato do gabarito.

Obs. 3: Da forma como foi apresentada a EDO, devemos ter \frac{y}{x} > 0, pois essa expressão está dentro do logaritmo que aparece no segundo membro da equação. Portanto, na resposta final essa expressão não precisa aparecer em módulo.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [equaçoes diferenciais] EDO 1ªordem homogenea

Mensagempor paula luna » Dom Dez 04, 2011 16:12

:y: :y: :y: :y: :y: Muito bom!!
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.