por rhodry » Qua Nov 30, 2011 14:14

- Imagem_Exercício
olá pessoal, não consegui compreender este exercício, não sei nem por onde começar, desde já agradeço se tiver alguém disponível para me ajudar... a imagem encontra-se em anexo...
Considere duas circunferências de raios iguais a Re centro em C1 e C2 , conforme a figura abaixo. Sabendo que a distância entre C1 e C2 é dada por 2s ( 0 ? s ? R ) e que o ângulo AC2B=?,
a) Obtenha a expressão que fornece a área superposta

das duas circunferência em função de R,s e

-
rhodry
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Ter Out 25, 2011 17:59
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por rhodry » Qua Nov 30, 2011 15:16
olá, pessoal tenho pensado da seguinte maneira..
tendo como expressão:
A=

(

-sen

)
não sei se está certo, tenho muitas dúvidas.
-
rhodry
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Ter Out 25, 2011 17:59
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por Rosana Vieira » Qua Nov 30, 2011 17:56
Estou com dificuldade para resolver este exercício também
Considere duas circunferências de raios iguais a e centro em C1 e C2 , conforme a figura abaixo. Sabendo que a distância entre C1 e C2 é dada por ( ) e que o ângulo ,
a) Obtenha a expressão que fornece a área superposta das duas circunferências em função de .
b) Qual a posição relativa das circunferências quando ? Justifique utilizando a expressão obtida em a).
c ) Qual a posição relativa das circunferências quando ? Justifique utilizando a expressão obtida em a).
-
Rosana Vieira
- Usuário Parceiro

-
- Mensagens: 74
- Registrado em: Qui Nov 17, 2011 00:11
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por ivanfx » Qua Nov 30, 2011 18:20
Que tal pensarem em primeiro determinar a área do setor e depois determinar a área do triângulo retângulo que é formado traçando um segmento de C1 até C2 ai fica mais fácil para definir a fórmula
-
ivanfx
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Dom Out 16, 2011 00:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por vanessa_mat » Qua Nov 30, 2011 19:01
Considere duas circunferências de raios iguais a R e centro em C1 e C2 , conforme a figura abaixo. Sabendo que a distância entre C1 e C2 é dada por 2s ( 0?s?R ) e que o ângulo A(C_2 ) ?B=?,
Considere duas circunferências de raios iguais a R e centro em C1 e C2 , conforme a figura abaixo. Sabendo que a distância entre C1 e C2 é dada por 2s ( 0?s?R ) e que o ângulo A(C_2 ) ?B=?,
a) Obtenha a expressão que fornece a área superposta

das duas circunferência em função de R,s e

[/quote]
A letra a, depois de muitas tentativas e por enquanto uma noite sem dormir fiz achando a área do setor circular menos a área do triangulo, esse resultado vezes dois:: ficou uma sopa de letrinhas, mas a intenção era essa!!! agora não estou conseguindo resolver o item b e c . Será que alguém pode me dar uma ajudinha???? Já teho a expressão do item a, mas não entendi como proceder nos itens seguintes!!!
b)Qual a posição relativa das circunferências quando A_s=0? Justifique utilizando a expressão obtida em a).
c)Qual a posição relativa das circunferências quando A_s=?R^2? Justifique utilizando a expressão obtida em a).
-
vanessa_mat
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Seg Nov 21, 2011 16:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por Rosana Vieira » Qua Nov 30, 2011 19:41
vanessa_mat escreveu:Considere duas circunferências de raios iguais a R e centro em C1 e C2 , conforme a figura abaixo. Sabendo que a distância entre C1 e C2 é dada por 2s ( 0?s?R ) e que o ângulo A(C_2 ) ?B=?,
Considere duas circunferências de raios iguais a R e centro em C1 e C2 , conforme a figura abaixo. Sabendo que a distância entre C1 e C2 é dada por 2s ( 0?s?R ) e que o ângulo A(C_2 ) ?B=?,
a) Obtenha a expressão que fornece a área superposta

das duas circunferência em função de R,s e

A letra a, depois de muitas tentativas e por enquanto uma noite sem dormir fiz achando a área do setor circular menos a área do triangulo, esse resultado vezes dois:: ficou uma sopa de letrinhas, mas a intenção era essa!!! agora não estou conseguindo resolver o item b e c . Será que alguém pode me dar uma ajudinha???? Já teho a expressão do item a, mas não entendi como proceder nos itens seguintes!!!
b)Qual a posição relativa das circunferências quando A_s=0? Justifique utilizando a expressão obtida em a).
c)Qual a posição relativa das circunferências quando A_s=?R^2? Justifique utilizando a expressão obtida em a).[/quote]
Vanessa na atividade 2a é esta fórmula A= R2 (? – sem ?)
-
Rosana Vieira
- Usuário Parceiro

-
- Mensagens: 74
- Registrado em: Qui Nov 17, 2011 00:11
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por dea74 » Qua Nov 30, 2011 19:46
ivanfx escreveu:Que tal pensarem em primeiro determinar a área do setor e depois determinar a área do triângulo retângulo que é formado traçando um segmento de C1 até C2 ai fica mais fácil para definir a fórmula
Oi Ivan
Só nao consegui enxergar o triangulo. Poderia ser mais explicito?
Abs
Déa
-
dea74
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 30, 2011 19:22
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: formado
por ivanfx » Qua Nov 30, 2011 20:19
dea74 escreveu:ivanfx escreveu:Que tal pensarem em primeiro determinar a área do setor e depois determinar a área do triângulo retângulo que é formado traçando um segmento de C1 até C2 ai fica mais fácil para definir a fórmula
Oi Ivan
Só nao consegui enxergar o triangulo. Poderia ser mais explicito?
Abs
Déa
Se riscar um segmento do ponto A até o ponto B você obterá 2 triângulos retângulos, você terá triângulo AC2M e BC2M, basta calcular a área de 1 e depois multiplicar por 2
-
ivanfx
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Dom Out 16, 2011 00:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Rosana Vieira » Qua Nov 30, 2011 21:18
ivanfx escreveu:Que tal pensarem em primeiro determinar a área do setor e depois determinar a área do triângulo retângulo que é formado traçando um segmento de C1 até C2 ai fica mais fácil para definir a fórmula
Ivan na atividade 2a é esta fórmula A= R2 (? – sem ?)
Ainda não estou entendendo o exercício
-
Rosana Vieira
- Usuário Parceiro

-
- Mensagens: 74
- Registrado em: Qui Nov 17, 2011 00:11
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por ivanfx » Qua Nov 30, 2011 21:49
orientação dada pelo tutor agora pouco
1) A área da intersecção das duas circunferências (círculos) pode ser calculada como 2 vezes a área do segmento circular de uma delas. Esse segmento circular, por sua vez, pode ser calculado como sendo a área do setor circular menos a área do triângulo isósceles. Agora, para encontrar a área desse triângulo, você deve descobrir o valor de AB. Como? Faça um Teorema de Pitágoras com AB/2 sendo um dos catetos, s o outro cateto e R, a hipotenusa. A sua resposta deve ficar em função dos dados do enunciado.
2) Há outra maneira de se resolver o problema: o procedimento é o mesmo descrito acima. A única mudança é no cálculo da área do triângulo. Observe que se você sabe o raio e o ângulo, então a área desse triângulo é dada por (R.R.sen(teta))/2. Nesse caso, a resposta ficará em função de apenas duas variáveis: R e "teta".
Ambas as resoluções são absolutamente corretas. O único problema é que os itens b e c atribui valores para s. Sendo assim, é fundamental que você saiba a fórmula em função das três variáveis: R, "teta" e s, que é a primeira maneira. No item b, as circunferências serão tangentes externamente e a área da intersecção será igual a ... No item c, as circunferências estarão sobrepostas e a área da intersecção será igual a
-
ivanfx
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Dom Out 16, 2011 00:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por dea74 » Qua Nov 30, 2011 22:00
ivanfx escreveu:orientação dada pelo tutor agora pouco
1) A área da intersecção das duas circunferências (círculos) pode ser calculada como 2 vezes a área do segmento circular de uma delas. Esse segmento circular, por sua vez, pode ser calculado como sendo a área do setor circular menos a área do triângulo isósceles. Agora, para encontrar a área desse triângulo, você deve descobrir o valor de AB. Como? Faça um Teorema de Pitágoras com AB/2 sendo um dos catetos, s o outro cateto e R, a hipotenusa. A sua resposta deve ficar em função dos dados do enunciado.
2) Há outra maneira de se resolver o problema: o procedimento é o mesmo descrito acima. A única mudança é no cálculo da área do triângulo. Observe que se você sabe o raio e o ângulo, então a área desse triângulo é dada por (R.R.sen(teta))/2. Nesse caso, a resposta ficará em função de apenas duas variáveis: R e "teta".
Ambas as resoluções são absolutamente corretas. O único problema é que os itens b e c atribui valores para s. Sendo assim, é fundamental que você saiba a fórmula em função das três variáveis: R, "teta" e s, que é a primeira maneira. No item b, as circunferências serão tangentes externamente e a área da intersecção será igual a ... No item c, as circunferências estarão sobrepostas e a área da intersecção será igual a
Valeu Ivan, agora entendi
-
dea74
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 30, 2011 19:22
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: formado
por Francesca Vilanni » Qua Nov 30, 2011 22:11
Se vc não usar o s na fórmula, basta justificar, dizendo que s varia de forma inversamente proporcional a teta.
-
Francesca Vilanni
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sáb Out 22, 2011 22:31
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por vanessa_mat » Qua Nov 30, 2011 22:29
Rosana Vieira escreveu:vanessa_mat escreveu:Considere duas circunferências de raios iguais a R e centro em C1 e C2 , conforme a figura abaixo. Sabendo que a distância entre C1 e C2 é dada por 2s ( 0?s?R ) e que o ângulo A(C_2 ) ?B=?,
Considere duas circunferências de raios iguais a R e centro em C1 e C2 , conforme a figura abaixo. Sabendo que a distância entre C1 e C2 é dada por 2s ( 0?s?R ) e que o ângulo A(C_2 ) ?B=?,
a) Obtenha a expressão que fornece a área superposta

das duas circunferência em função de R,s e

A letra a, depois de muitas tentativas e por enquanto uma noite sem dormir fiz achando a área do setor circular menos a área do triangulo, esse resultado vezes dois:: ficou uma sopa de letrinhas, mas a intenção era essa!!! agora não estou conseguindo resolver o item b e c . Será que alguém pode me dar uma ajudinha???? Já teho a expressão do item a, mas não entendi como proceder nos itens seguintes!!!
b)Qual a posição relativa das circunferências quando A_s=0? Justifique utilizando a expressão obtida em a).
c)Qual a posição relativa das circunferências quando A_s=?R^2? Justifique utilizando a expressão obtida em a).
Vanessa na atividade 2a é esta fórmula A= R2 (? – sem ?)[/quote]
área do setor circular:

área do tri : Rs-s^2
2.(área do setor circular- área do tri)? a minha deu diferente da sua!!! porque será??
-
vanessa_mat
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Seg Nov 21, 2011 16:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por vanessa_mat » Qua Nov 30, 2011 22:39
ivanfx escreveu:orientação dada pelo tutor agora pouco
1) A área da intersecção das duas circunferências (círculos) pode ser calculada como 2 vezes a área do segmento circular de uma delas. Esse segmento circular, por sua vez, pode ser calculado como sendo a área do setor circular menos a área do triângulo isósceles. Agora, para encontrar a área desse triângulo, você deve descobrir o valor de AB. Como? Faça um Teorema de Pitágoras com AB/2 sendo um dos catetos, s o outro cateto e R, a hipotenusa. A sua resposta deve ficar em função dos dados do enunciado.
2) Há outra maneira de se resolver o problema: o procedimento é o mesmo descrito acima. A única mudança é no cálculo da área do triângulo. Observe que se você sabe o raio e o ângulo, então a área desse triângulo é dada por (R.R.sen(teta))/2. Nesse caso, a resposta ficará em função de apenas duas variáveis: R e "teta".
Ambas as resoluções são absolutamente corretas. O único problema é que os itens b e c atribui valores para s. Sendo assim, é fundamental que você saiba a fórmula em função das três variáveis: R, "teta" e s, que é a primeira maneira. No item b, as circunferências serão tangentes externamente e a área da intersecção será igual a ... No item c, as circunferências estarão sobrepostas e a área da intersecção será igual a
Não consegui entender ainda o item b e c, o item a tinha feito igual ao seu comentário que tb tinha recebido uma orientação parecida, a única diferença foi que na área do setor circular fiz: área do círculo é diretamente proporcional a do ângulo central A=

e a área do triângulo Rs - s^2. Será :

.
Vc pode me ajudar a continuar???
-
vanessa_mat
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Seg Nov 21, 2011 16:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.