por Cristiano Tavares » Sex Nov 25, 2011 22:54
Olá a todos,
Estou precisando de uma dica sobre como resolver a integral
![\int_{}^{}du / \sqrt[2]{{u}^{2}-{a}^{2}} \int_{}^{}du / \sqrt[2]{{u}^{2}-{a}^{2}}](/latexrender/pictures/09cea9ef7167a1520b8d1520005b1b82.png)
. Sei que a resposta é
![ln \left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|+C ln \left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|+C](/latexrender/pictures/f7e2db5047efb97cb206190cc555b136.png)
, mas não sei como chegar a essa expressão. Desde já agradeço a atenção dispensada por todos.
-
Cristiano Tavares
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Mai 11, 2011 21:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
por LuizAquino » Sáb Nov 26, 2011 08:05
Cristiano Tavares escreveu:Estou precisando de uma dica sobre como resolver a integral
![\int_{}^{}du / \sqrt[2]{{u}^{2}-{a}^{2}} \int_{}^{}du / \sqrt[2]{{u}^{2}-{a}^{2}}](/latexrender/pictures/09cea9ef7167a1520b8d1520005b1b82.png)
. Sei que a resposta é
![\ln \left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|+C \ln \left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|+C](/latexrender/pictures/c52b9323536640e434b38a6823f1eb95.png)
, mas não sei como chegar a essa expressão
Para conferir a resolução, siga os procedimentos abaixo.
- Acesse a página: http://www.wolframalpha.com/
- No campo de entrada, digite:
- Código: Selecionar todos
integrate 1/sqrt(u^2 - a^2) du
- Clique no botão de igual ao lado do campo de entrada.
- Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
- Pronto! Agora basta estudar a resolução e comparar com a sua.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Cristiano Tavares » Sáb Nov 26, 2011 08:56
Luiz Aquino,
Obrigado pela resposta, o site indicado por você é excelente. Resolvi a integral, mas ainda ficou uma dúvida. Na demonstração do site, ao final aparece o logaritmo ln todo dividido por "a", e aí é dito que para valores restritos de "u" e "a", esse "a" pode ser eliminado da expressão, não entendi o porquê disso. Resolvi a integral sozinho e encontrei como resposta
![\frac{1}{a}ln\left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right| \frac{1}{a}ln\left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|](/latexrender/pictures/b1f68dd92bff5e7d44d111980c524a0f.png)
.
Obrigado e um abraço,
Cristiano Tavares
-
Cristiano Tavares
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Mai 11, 2011 21:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
por LuizAquino » Sáb Nov 26, 2011 16:14
Cristiano Tavares escreveu:Na demonstração do site, ao final aparece o logaritmo ln todo dividido por "a", e aí é dito que para valores restritos de "u" e "a", esse "a" pode ser eliminado da expressão, não entendi o porquê disso.
Eis o final que aparece no site:
(...)

Which is equivalent for restricted u and a values to:

----------

is the natural logarithm.
Fazendo a restrição a > 0 e usando as propriedades de logaritmos, temos que:

Note que a expressão

representa uma outra constante real. Vamos chamar essa outra constante de c. Sendo assim, temos que:

Efetuando a subtração que há dentro da raiz, temos que:

Fazendo a restrição u > a (lembrando que já fizemos também a restrição a > 0), temos que:


Cristiano Tavares escreveu: Resolvi a integral sozinho e encontrei como resposta

.
Não está correto.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Cristiano Tavares » Qua Nov 30, 2011 15:32
Luiz Aquino,
Agora eu entendi, muito obrigado pela ajuda!
Cristiano Tavares
-
Cristiano Tavares
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Mai 11, 2011 21:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Como resolvo essa integral indefinida??
por Justiceira » Sáb Out 31, 2009 19:52
- 3 Respostas
- 2916 Exibições
- Última mensagem por Molina

Seg Nov 23, 2009 21:06
Cálculo: Limites, Derivadas e Integrais
-
- Como calcular a integral indefinida por substituição
por Therodrigou » Dom Ago 26, 2018 23:13
- 2 Respostas
- 6121 Exibições
- Última mensagem por Therodrigou

Ter Ago 28, 2018 00:23
Cálculo: Limites, Derivadas e Integrais
-
- Integral indefinida - como integrar essa função?
por vinik1 » Seg Dez 05, 2011 15:53
- 2 Respostas
- 2646 Exibições
- Última mensagem por vinik1

Seg Dez 05, 2011 16:27
Cálculo: Limites, Derivadas e Integrais
-
- como resolver a integral de y² . e^y²
por Anniinha » Ter Ago 16, 2011 18:57
- 10 Respostas
- 5705 Exibições
- Última mensagem por LuizAquino

Qua Ago 17, 2011 17:25
Cálculo: Limites, Derivadas e Integrais
-
- Integral, como resolver??
por manuoliveira » Qua Out 17, 2012 21:40
- 2 Respostas
- 1743 Exibições
- Última mensagem por e8group

Qui Out 18, 2012 11:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
função demanda
Autor:
ssousa3 - Dom Abr 03, 2011 20:55
alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear
Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato
Assunto:
função demanda
Autor:
ssousa3 - Seg Abr 04, 2011 14:30
Gente alguém por favor me ensine a calcular a fórmula da função demanda

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.