por gjmiquel » Ter Nov 29, 2011 13:12
Seja

uma função duas vezes diferenciável, tal que

e

. Se
![A=ln[f(4)/9] A=ln[f(4)/9]](/latexrender/pictures/591655eaf7758ec794b500e2057c19bc.png)
, calcule o valor de
![\alpha=\left[{A\int_{0}^1e^{t}f(t)dt}\right]^2 \alpha=\left[{A\int_{0}^1e^{t}f(t)dt}\right]^2](/latexrender/pictures/c756e4129eebeb559242771efc73dd1b.png)
.
Eu tentei diversas abordagens. A mais lógica e direta foi trabalhar através da expansão de Taylor, e dessa forma obter uma expressão para a função f(x). Outra abordágem foi trabalhar inicialmente através da integral definida. No entanto, em ambas as abordagens, o que causa um pouco de desconforto (hehehe) é que a expressão obtida para f(x) garante que f(4) seja um número negativo.
Alguma ajuda?
-
gjmiquel
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Nov 29, 2011 12:49
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciências Econômicas
- Andamento: formado
por LuizAquino » Ter Nov 29, 2011 14:43
gjmiquel escreveu:Seja

uma função duas vezes diferenciável, tal que

e

. Se
![A=ln[f(4)/9] A=ln[f(4)/9]](/latexrender/pictures/591655eaf7758ec794b500e2057c19bc.png)
, calcule o valor de
![\alpha=\left[{A\int_{0}^1e^{t}f(t)dt}\right]^2 \alpha=\left[{A\int_{0}^1e^{t}f(t)dt}\right]^2](/latexrender/pictures/c756e4129eebeb559242771efc73dd1b.png)
.
gjmiquel escreveu:Eu tentei diversas abordagens. A mais lógica e direta foi trabalhar através da expansão de Taylor, e dessa forma obter uma expressão para a função f(x). Outra abordágem foi trabalhar inicialmente através da integral definida. No entanto, em ambas as abordagens, o que causa um pouco de desconforto (hehehe) é que a expressão obtida para f(x) garante que f(4) seja um número negativo.
Alguma ajuda?
Primeiro resolva a
EDO linear de 2ª ordem:

, sendo que

.
Após resolver a EDO você vai encontrar que

.
A partir daí fica fácil concluir o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por gjmiquel » Qua Nov 30, 2011 09:14
Muito obrigado. Minha cabeça parece não ter funcionado direito.....hehehehhe
Muito obrigado mesmo...
-
gjmiquel
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Nov 29, 2011 12:49
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciências Econômicas
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (UFRJ 2009 ) Questão do vestibular da ufrj em 2009 me ajudem
por rafael84 » Ter Jul 13, 2010 22:57
- 1 Respostas
- 2588 Exibições
- Última mensagem por Lucio Carvalho

Qui Jul 15, 2010 01:28
Binômio de Newton
-
- Questão de concurso pmpe 2009 38
por Raphael Feitas10 » Qua Nov 09, 2011 01:24
- 5 Respostas
- 4084 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 14, 2012 21:43
Sistemas de Equações
-
- UFF 2009
por Bernar » Qui Nov 26, 2009 23:19
- 1 Respostas
- 2848 Exibições
- Última mensagem por Molina

Sex Nov 27, 2009 13:05
Progressões
-
- Exercício UFG 2009-1
por wdcardoso » Sex Abr 13, 2012 22:46
- 5 Respostas
- 3260 Exibições
- Última mensagem por wdcardoso

Sáb Abr 14, 2012 21:12
Geometria Plana
-
- Problema (UNISC 2009)
por Karina » Qui Mar 25, 2010 20:35
- 2 Respostas
- 2567 Exibições
- Última mensagem por Karina

Sáb Mar 27, 2010 13:50
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.