• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ANPEC-2009 Questão 14 - Integrais

ANPEC-2009 Questão 14 - Integrais

Mensagempor gjmiquel » Ter Nov 29, 2011 13:12

Seja f:\Re \rightarrow \Re uma função duas vezes diferenciável, tal que f(0)=f'(0)=1 e d^2f(x)/dx^2 + 2df(x)/dx + f(x)=0. Se A=ln[f(4)/9], calcule o valor de \alpha=\left[{A\int_{0}^1e^{t}f(t)dt}\right]^2.

Eu tentei diversas abordagens. A mais lógica e direta foi trabalhar através da expansão de Taylor, e dessa forma obter uma expressão para a função f(x). Outra abordágem foi trabalhar inicialmente através da integral definida. No entanto, em ambas as abordagens, o que causa um pouco de desconforto (hehehe) é que a expressão obtida para f(x) garante que f(4) seja um número negativo.
Alguma ajuda?
gjmiquel
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 29, 2011 12:49
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciências Econômicas
Andamento: formado

Re: ANPEC-2009 Questão 14 - Integrais

Mensagempor LuizAquino » Ter Nov 29, 2011 14:43

gjmiquel escreveu:Seja f: \Re \rightarrow \Re uma função duas vezes diferenciável, tal que f(0)=f'(0)=1 e d^2f(x)/dx^2 + 2df(x)/dx + f(x)=0. Se A=ln[f(4)/9], calcule o valor de \alpha=\left[{A\int_{0}^1e^{t}f(t)dt}\right]^2.


gjmiquel escreveu:Eu tentei diversas abordagens. A mais lógica e direta foi trabalhar através da expansão de Taylor, e dessa forma obter uma expressão para a função f(x). Outra abordágem foi trabalhar inicialmente através da integral definida. No entanto, em ambas as abordagens, o que causa um pouco de desconforto (hehehe) é que a expressão obtida para f(x) garante que f(4) seja um número negativo.
Alguma ajuda?


Primeiro resolva a EDO linear de 2ª ordem: f^{\prime\prime}(x) + 2f^\prime(x) + f(x) = 0 , sendo que f(0) = f^\prime(0) = 1 .

Após resolver a EDO você vai encontrar que f(x) = e^{-x} + 2xe^{-x} .

A partir daí fica fácil concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: ANPEC-2009 Questão 14 - Integrais

Mensagempor gjmiquel » Qua Nov 30, 2011 09:14

Muito obrigado. Minha cabeça parece não ter funcionado direito.....hehehehhe
Muito obrigado mesmo...
gjmiquel
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 29, 2011 12:49
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciências Econômicas
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: