• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral definida

integral definida

Mensagempor ferdinandaa » Seg Nov 28, 2011 14:29

nao sei como calcular esse exercicio
\textbf{\int_{2,1} 6x4 - 8x³/ 2x³ dx^{}}

obrigada pela ajuda
ferdinandaa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Out 03, 2011 20:11
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: integral definida

Mensagempor LuizAquino » Seg Nov 28, 2011 17:22

ferdinandaa escreveu:nao sei como calcular esse exercicio
\textbf{\int_{2,1} 6x4 - 8x³/ 2x³ dx^{}}


Ao que parece, você deseja calcular a integral:

\int_1^2 \frac{6x^4 - 8x^3}{2x^3} \, dx

Para conferir a resolução dessa integral, siga os procedimentos abaixo.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate (6x^4 - 8x^3)/(2x^3) dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.

Ao final desse procedimento, você obtém que:

\int \frac{6x^4 - 8x^3}{2x^3} \, dx = \frac{3x^2}{2} - 4x + c

Agora basta você aplicar o Teorema Fundamental do Cálculo:

\int_1^2 \frac{6x^4 - 8x^3}{2x^3} \, dx = \left[\frac{3x^2}{2} - 4x \right]_1^2

= \left[\frac{3\cdot 2^2}{2} - 4\cdot 2 \right] - \left[\frac{3\cdot 1^2}{2} - 4\cdot 1 \right]

= (6 - 8) - \left(\frac{3}{2} - 4\right)

= -2 - \left(-\frac{5}{2}\right)

= \frac{1}{2}

Para conferir a sua resposta, você pode usar novamente o procedimento acima, porém você deve alterar o passo 2 para:
Código: Selecionar todos
integrate (6x^4 - 8x^3)/(2x^3) dx x=1..2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.