• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Trigonometrica

Equação Trigonometrica

Mensagempor joaofonseca » Seg Nov 28, 2011 00:38

Dada a função 2 \cdot sin(2x+\frac{\pi}{2}) encontrei os dados para desenhar o grafico.

Amplitude

É o valor absoluto do fator que multiplica o seno. Ou seja, 2. Quer dizer que o contradomidio será [-2,2].

Periodo

O periodo da função elementar sin(x) é 2\pi, mas como a variavel independente multiplica por 2.Então o periodo desta função será \pi.

Ãngulo de desfasamento

O valor do desfasamento será \frac{\pi}{4}

Tudo bem,até agora!Mas o livro de exercicios pergunta quais os pontos de interseção com a função sin(x) no intervalo de [0,2\pi].

Ou seja pede para resolver a equação 2 \cdot sin(2x+\frac{\pi}{2})=sin(x).
Eu não sei por onde começar, pois os ãngulos não são iguais.De um lado temos 2x+\frac{\pi}{2} do outro x.

Alguém me ajuda?Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação Trigonometrica

Mensagempor TheoFerraz » Seg Nov 28, 2011 14:26

queremos então resolver a seguinte

2sin(2x + \frac{ \pi}{2})= sin(x)

duas coisas podemos fazer, vamos pela mais obvia... Expanda o termo da esquerda como uma soma de arcos, lembrando que

sin( \theta + \phi) = sin(\theta)cos(\phi) + sin(\phi)cos(\theta)

otimo, já da pra tentar né ?

2sin(2x + \frac{ \pi}{2}) = 2 \left( sin(2x)cos\left( \frac{\pi}{2} \right) + sin\left( \frac{\pi}{2} \right)cos(2x) \right) = sin(x)

o mais lindo de tudo é que pi/2 vai zerar algumas coisas e vai fazer virar 1 outras... dai voce tem algo bem simples.

caso necessario use :

sin( \alpha) = \pm \;\; \sqrt[]{1- {cos}^{2}(\alpha)}

divirta-se
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Equação Trigonometrica

Mensagempor joaofonseca » Seg Nov 28, 2011 20:23

Obrigado pela ajuda.
Depois de aplicar a formula da soma eu cheguei ao seguinte:
2cos(2x)=sin(x)

Depois apliquei a formula do ângulo duplo e assim obtive uma expressão quadratica:
4sin^2(x)+sin(x)-2=0

Como aparentemente esta expressão não é fatorável.Apliquei a formula de bhaskara.Obtive:

sin(x)=-0.843 \vee sin(x)=0.593

Apliquei a inversa do seno e obtive (radianos):

x=-1 \vee x=0.635
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação Trigonometrica

Mensagempor TheoFerraz » Seg Nov 28, 2011 21:43

joaofonseca escreveu:Como aparentemente esta expressão não é fatorável.Apliquei a formula de bhaskara.Obtive:

sin(x)=-0.843 \vee sin(x)=0.593

Apliquei a inversa do seno e obtive (radianos):

x=-1 \vee x=0.635


Bem legal isso que voce fez! Eu não usaria isso! foi bem legal!

mas tome um cuidado!

ao aplicar a função inversa em um sin(x) = B

voce precisa obter duas respostas!

Existem sempre dois angulos x que tem um seno específico....

Voce sabe como achar o outro tendo um! Transponha os quadrantes!

um angulo no primeiro quadrante terá um seno igual à sua equivalencia no segundo quadrante!

e um angulo no terceiro quadrante terá um seno igual à sua equivalencia no quarto quadrante!

está acompanhando? sinto que estou sendo levemente negligente, mas vi que voce tem raciocínio rápido!

seu resultado está correto porém incompleto... existem mais 2 respostas

Imagem

Uploaded with ImageShack.us

ATENÇÂO: Por mais que a figura esteja mostrando 5 pontos, perceba que o primeiro e o ultimo são o mesmo...
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Equação Trigonometrica

Mensagempor joaofonseca » Seg Nov 28, 2011 23:29

As soluções dizem respeito aos angulos de referência.Sendo o seno uma função periodica, existirão infinitas soluções.
Mas para efeitos académicos, decidi fazer uma pequena alteração à expressão anterior.Em vez de ter amplitude 2, terá amplitude 1 e por isso fica assim:

sin(2x+\frac{\pi}{2})=sin(x)

Aplicando sucessivamente a identidade da soma e do duplo angulo, fica:

1-2sin^2(x)=sin(x)
1-2sin^2(x)-sin(x)=0
2sin^2(x)+sin(x)-1=0

Como se pode verificar, já se pode fatorar com facilidade.

(2sin(x)-1)(sin(x)+1)=0
sin(x)=\frac{1}{2} \vee sin(x)=-1

Estes valores já nos fazem lembrar dos angulos notaveis (aqueles angulos para os quais devemos saber os valores)
Assim:
x=\frac{\pi}{6} \vee x=\frac{3\pi}{2}

Estas são as soluções no intervalo [0,2\pi].Se quisermos saber todas as soluções escrevemos:

x=\frac{\pi}{6}+2k\pi \vee x=\frac{3\pi}{2}+2k\pi em que k pertence aos numeros inteiros.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação Trigonometrica

Mensagempor TheoFerraz » Ter Nov 29, 2011 15:53

Na função que foi dada no enunciado existem 4 pontos de interssecção. na função que voce resolveu usar na ultima resposta, de fato existem apenas 2.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.