• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Método de Indução Matemática

Método de Indução Matemática

Mensagempor Beatriz4 » Sex Nov 25, 2011 21:25

Precisava de ajuda neste exercicio:

Considere a função real de variável real definida por f(x)=cos(3x). Prove pelo método de indução matemática que as sucessivas derivadas de f(x) podem ser dadas pela expressão: f^n'(x)=(3^n)cos(n*pi/2+3x).

Já calculei a primeira derivada, ou seja para n'=1: f'(x)=-3sin(3x) e agora segundo este método tenho de pegar na expressão f^n'(x)=(3^n)cos(n*pi/2+3x) e chegar a f^(n+1)'(x)=(3^(n+1))cos((n+1)*pi/2+3x) ou então vice-versa. Como hei de fazer? Se alguém me puder dar umas luzes agradecia :)
Beatriz4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Nov 25, 2011 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando

Re: Método de Indução Matemática

Mensagempor MarceloFantini » Sex Nov 25, 2011 23:09

Perceba que a relação \cos \left( \frac{\pi}{2} +k \right) = - \sin k, logo f'(x) = 3(- \sin (3x)) = 3 \cos \left( \frac{\pi}{2} +3x \right).

Logo, vamos lá: pela hipótese de indução temos que f^{(n)}(x) = (3^n) \cos \left( \frac{n \pi}{2} + 3x \right). Derivando, temos:

f^{(n+1)}(x) = (3^n) \cdot \left(- 3 \sin \left( \frac{n \pi}{2} + 3x \right) \right) = (3^{n+1}) \cdot \left(- \sin \left( \frac{n \pi}{2} +3x \right) \right) =

= f^{(n+1)}(x) = (3^{n+1}) \cdot \left( \cos \left( \frac{n \pi}{2} + 3x + \frac{\pi}{2} \right) \right) = (3^{n+1}) \left( \cos \left( \frac{(n+1) \pi}{2} + 3x \right) \right)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Método de Indução Matemática

Mensagempor Beatriz4 » Sex Nov 25, 2011 23:23

Obrigada pela rápida resposta e por me teres esclarecido! =)
Beatriz4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Nov 25, 2011 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.