• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação.

Potenciação.

Mensagempor Marcos1978 » Qui Nov 24, 2011 19:16

Por favor, gostaria de saber se eu resolvi de forma correta. Não bateu com a resposta do gabarito, mas como várias outras respostas do gabarito estavam erradas, não sei se é o gabarito que está errado ou sou eu.
[{2}^{9}:({2}^{2}.{2}{)}^{3}{]}^{-3}= [{2}^{9}:({2}^{3}{)}^{3}{]}^{-3}=
[{2}^{9}:{2}^{9}{]}^{-3}= {1}^{-3}=\frac{1}{{1}^{3}}=1
Editado pela última vez por Marcos1978 em Qui Nov 24, 2011 20:43, em um total de 1 vez.
Marcos1978
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Nov 23, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação.

Mensagempor Andreza » Qui Nov 24, 2011 19:50

Quando vc faz 1 elevado a -3 vc usa a regra
a elevado a menos n é igual a um sobre a elevado a n.
todo número elevado a 0 é igual a 1 portanto, 1 elevado a menos 3 é um sobre um elevado a 3 e o resultado de 1 a terceira é 1. Acredito q seja isso.
De uma conferida.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Potenciação.

Mensagempor Andreza » Qui Nov 24, 2011 20:10

http://pt.wikipedia.org/wiki/Exponencia%C3%A7%C3%A3o

De uma olhada neste link q potência é um assunto complexo demais . Até eu fiquei na dúvida e fui pesquisar.

Potências de 1As potências de 1 são as potências de base 1, dados por 1n, sendo n pertencente aos reais. Não importa o valor de "n", 1n será sempre 1. Não se pode afirmar que 0 elevado a 0 é igual a 1.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Potenciação.

Mensagempor Marcos1978 » Qui Nov 24, 2011 20:51

Andreza escreveu:http://pt.wikipedia.org/wiki/Exponencia%C3%A7%C3%A3o

De uma olhada neste link q potência é um assunto complexo demais . Até eu fiquei na dúvida e fui pesquisar.

Potências de 1As potências de 1 são as potências de base 1, dados por 1n, sendo n pertencente aos reais. Não importa o valor de "n", 1n será sempre 1. Não se pode afirmar que 0 elevado a 0 é igual a 1.

Acho que a minha resposta estava errada. Eu editei a questão e coloquei a resposta certa. Certa se o restante da questão estiver resolvido corretamente
Editado pela última vez por Marcos1978 em Qui Nov 24, 2011 22:38, em um total de 1 vez.
Marcos1978
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Nov 23, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação.

Mensagempor MarceloFantini » Qui Nov 24, 2011 21:51

Está certo, dá 1 pelo o que você fez, que acredito que seja isso: \left[ \frac{2^9}{(2^2 \cdot 2)^3} \right]^{-3}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.