por beel » Dom Nov 20, 2011 22:33
tomei como o "u" a raiz de t,da seguinte integrada
![\int_{1}^{ln5}(e\sqrt[]{t}/\sqrt[]{t})dt \int_{1}^{ln5}(e\sqrt[]{t}/\sqrt[]{t})dt](/latexrender/pictures/c84d2acc7402c7db0141ce7ade318f5c.png)
mas to em duvida se preciso substituir nos extremos dela tambem..meu resultado deu
1/2(5/2 - e/2)
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Seg Nov 21, 2011 10:10
beel escreveu:tomei como o "u" a raiz de t,da seguinte integrada

mas to em duvida se preciso substituir nos extremos dela tambem..meu resultado deu
1/2(5/2 - e/2)
Fazendo a substituição

, temos que:
(i)

;
(ii) se t = 1, então u = 1 ;
(ii) se

, então

.
Sendo assim, obtemos que:
![\int_{1}^{\ln 5}\frac{e^\sqrt{t}}{\sqrt{t}}\,dt = \int_{1}^{\sqrt{\ln 5}}2e^u\,du = \left[2e^u\right]_1^{\sqrt{\ln 5}} = 2\left(e^{\sqrt{\ln 5}} - e\right) \int_{1}^{\ln 5}\frac{e^\sqrt{t}}{\sqrt{t}}\,dt = \int_{1}^{\sqrt{\ln 5}}2e^u\,du = \left[2e^u\right]_1^{\sqrt{\ln 5}} = 2\left(e^{\sqrt{\ln 5}} - e\right)](/latexrender/pictures/e1907097a3dc8480edb7be8689fa140d.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integração por substituição
por manuoliveira » Seg Out 22, 2012 22:33
- 2 Respostas
- 1743 Exibições
- Última mensagem por manuoliveira

Ter Out 23, 2012 00:49
Cálculo: Limites, Derivadas e Integrais
-
- integração por substituição
por medeiro_aa » Seg Dez 07, 2015 18:35
- 2 Respostas
- 3256 Exibições
- Última mensagem por medeiro_aa

Qua Mar 02, 2016 11:44
Cálculo: Limites, Derivadas e Integrais
-
- MÉTODO DE INTEGRAÇÃO POR SUBSTITUIÇÃO
por HenriquePegorari » Dom Jul 25, 2010 17:26
- 3 Respostas
- 4493 Exibições
- Última mensagem por MarceloFantini

Ter Jul 27, 2010 12:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por substituição] Ajuda, por favor?
por Ronaldobb » Dom Dez 16, 2012 18:44
- 2 Respostas
- 2019 Exibições
- Última mensagem por Ronaldobb

Dom Dez 16, 2012 18:47
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por substituição] Ajuda, por favor?
por Ronaldobb » Dom Dez 16, 2012 21:26
- 1 Respostas
- 1537 Exibições
- Última mensagem por young_jedi

Dom Dez 16, 2012 21:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.