• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistemas de Equações] trigonométricas

[Sistemas de Equações] trigonométricas

Mensagempor Aliocha Karamazov » Qui Nov 17, 2011 17:43

Pessoal, ao resolver um exercício de física, no qual preciso encontrar \theta_{1} e \theta_{2}, apareceu um sistema que eu não sei resolver. Na situação física, ambos os ângulos são menores que \frac{\pi}{2}.

O sistema é:
1,5\cos\theta_{1}=2\cos\theta_{2}
1,5\sin\theta_{1}+2\sin\theta_{2}=2,5

Eu pensei em usar coisas como \cos\theta_{1}=\sqrt{1-\sin^2\theta_{1}}, mas tenho a impressão de que essa não é a melhor maneira. Alguém pode me ajudar?
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Sistemas de Equações] trigonométricas

Mensagempor TheoFerraz » Qui Nov 17, 2011 17:50

da primeira equação do seu sistema voce obtém que :

cos {\theta}_{2} = \frac{1.5}{2} cos{\theta}_{1} = \frac{3}{4} cos{\theta}_{1}

e como voce mesmo percebeu, temos que:

cos {\theta}_{2}= \sqrt[]{1-sen{\theta}_{2}} = \frac{3}{4} cos{\theta}_{1}

com isso, voce chega que:

sen{\theta}_{2} = 1-{\left( \frac{3}{4} cos{\theta}_{1}  \right)}^{2}

se voce substituir ASSIM na segunda equação, nao vai dar em nada! esse cos de theta1 não nos ajuda... entaaaaao:

sen{\theta}_{2} = 1-{\left( \frac{3}{4} \left(\sqrt[]{1 - sen{\theta}_{1}} \right)  \right)}^{2}

dai

sen{\theta}_{2} = 1-{\left(\frac{3}{4} \right)}^{2} \times \left(1 - sen{\theta}_{1} \right)

substituindo isso na segunda equação voce começa a obter resultados... continue dai
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [Sistemas de Equações] trigonométricas

Mensagempor Aliocha Karamazov » Qui Nov 17, 2011 18:02

TheoFerraz escreveu:sen{\theta}_{2} = 1-{\left( \frac{3}{4} cos{\theta}_{1}  \right)}^{2}

O seno não deveria estar ao quadrado aí?
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Sistemas de Equações] trigonométricas

Mensagempor TheoFerraz » Qui Nov 17, 2011 18:09

SIM SIM SIM SIM SIM

em todos os momentos que eu coloquei:

\sqrt[]{\left(1- sen{\theta}_{k} \right)}

era pra ter sido:

\sqrt[]{\left(1- {sen}^{2}{\theta}_{k} \right)}


desculpe o erro, e obrigado a correção


.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [Sistemas de Equações] trigonométricas

Mensagempor Aliocha Karamazov » Qui Nov 17, 2011 18:13

Eu que agradeço pelo ajuda. Vou continuar aqui.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}