• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.G., calcule Sn=9+99+999... +10n-1

P.G., calcule Sn=9+99+999... +10n-1

Mensagempor georgefdfdl » Qui Nov 10, 2011 23:49

''Calcule:

Sn=9+99+999+…+10n -1

Sabendo que se trata da soma dos termos de uma P.G.''

Eu sei sobre o termo geral de uma P.G. e como calcular com a formula do termo geral de uma P.G.(an=a1.{q}^{n-1}
porem não estou conseguindo resolver esta questão, já que não consigo aplicar na formula, agradeço a quem puder me ajudar,
pois semana que vem haverá uma avaliação referente ao assunto e uma lista de exercicio.
georgefdfdl
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 10, 2011 23:37
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.G., calcule Sn=9+99+999... +10n-1

Mensagempor LuizAquino » Sex Nov 11, 2011 17:41

georgefdfdl escreveu:''Calcule:

Sn=9+99+999+…+10n -1

Sabendo que se trata da soma dos termos de uma P.G.''


Note que:

S_n = 9 + 99 + 999 + \cdots + \left(10^n - 1\right)

S_n = \left(10^1 - 1\right) + \left(10^2 - 1\right) + \left(10^3 - 1\right) + \cdots + \left(10^n - 1\right)

S_n  = \left(10^1 + 10^2 + 10^3 + \cdots + 10^n\right) - \overbrace{\left(1 + 1 + 1 + \cdots + 1\right)}^{\textrm{n parcelas}}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)