• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.G., calcule Sn=9+99+999... +10n-1

P.G., calcule Sn=9+99+999... +10n-1

Mensagempor georgefdfdl » Qui Nov 10, 2011 23:49

''Calcule:

Sn=9+99+999+…+10n -1

Sabendo que se trata da soma dos termos de uma P.G.''

Eu sei sobre o termo geral de uma P.G. e como calcular com a formula do termo geral de uma P.G.(an=a1.{q}^{n-1}
porem não estou conseguindo resolver esta questão, já que não consigo aplicar na formula, agradeço a quem puder me ajudar,
pois semana que vem haverá uma avaliação referente ao assunto e uma lista de exercicio.
georgefdfdl
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 10, 2011 23:37
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.G., calcule Sn=9+99+999... +10n-1

Mensagempor LuizAquino » Sex Nov 11, 2011 17:41

georgefdfdl escreveu:''Calcule:

Sn=9+99+999+…+10n -1

Sabendo que se trata da soma dos termos de uma P.G.''


Note que:

S_n = 9 + 99 + 999 + \cdots + \left(10^n - 1\right)

S_n = \left(10^1 - 1\right) + \left(10^2 - 1\right) + \left(10^3 - 1\right) + \cdots + \left(10^n - 1\right)

S_n  = \left(10^1 + 10^2 + 10^3 + \cdots + 10^n\right) - \overbrace{\left(1 + 1 + 1 + \cdots + 1\right)}^{\textrm{n parcelas}}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}