• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo]concavidade pela derivada

[calculo]concavidade pela derivada

Mensagempor beel » Dom Nov 06, 2011 17:40

em relaçao a essa funçao \frac{1}{1 + x^2}
preciso encontrar os intervalos onde ela é concava para cima, ai eu derivei a primeira vez e derivei a segunda mas nao to conseguindo simplificar...ela ficou assim \frac{-2(1+ x^2)^2 + 6(x^2)(1 + x^2)}{(1+ x^2)^4}. Os candidatos a pontos de inflexao, sao os pontos onde a derivada segunda nao existe ou da zero certo?fiz umas contas e meu ponto deu x^2=\frac{1}{2} mas estou muito em duvida
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo]concavidade pela derivada

Mensagempor LuizAquino » Qua Nov 09, 2011 08:54

beel escreveu:em relaçao a essa funçao \frac{1}{1 + x^2}
preciso encontrar os intervalos onde ela é concava para cima, ai eu derivei a primeira vez e derivei a segunda mas nao to conseguindo simplificar...ela ficou assim \frac{-2(1+ x^2)^2 + 6(x^2)(1 + x^2)}{(1+ x^2)^4}.


Note que:

\left(\frac{1}{1 + x^2} \right)^\prime = -\frac{2x}{\left(1+x^2\right)^2}

\left(\frac{1}{1 + x^2} \right)^{\prime\prime} = -\frac{2\left(1+x^2\right)^2 - 8x^2\left(1+x^2\right)}{\left(1+x^2\right)^4}

Dica: no numerador da fração que representa a segunda derivada, comece a simplificação colocando o termo \left(1+x^2\right) em evidência.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.