• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raízes da equação

Raízes da equação

Mensagempor Andreza » Ter Nov 01, 2011 12:31

Boa tarde,

Estou estudando para prestar concurso, pois fiz matemática e pós, mas estou encontrando muitas dificuldades diante das questões propostas pela banca organizadora FCC, este exercício q estou postando na verdade nem sei como começar, pois nao foram dados nenhum valores pra x. Espero q vcs possam me ajudar e se algum de vcs moderadores, forem professores de aulas particulares favor entrar em contato q pelo jeito eu estou precisando de umas aulas extras. Aguardo resposta, desde já fico muito grata. Obs. : Eu já comprei curso on line e apostilas, mas mesmo assim está muito difícil para o nível do concurso.

Quais são as raízes da equação sen²x - ( 2sen x cos x - cos²x) = 0 em [0,2pi] ?
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Raízes da equação

Mensagempor Neperiano » Ter Nov 01, 2011 14:19

Ola

O que o Marcelo fez está correto:

MarceloFantini escreveu:Andreza, desconsidere a resposta do Neperiano. Primeiro, é interessante lembrar algumas relações trigonométricas úteis: \textrm{sen}^2 x + \cos^2 x = 1 e 2 \cdot \textrm{sen } x \cdot \cos x = \textrm{sen}(2x). Desta forma, a equação se torna:

sen^2 \, x - (2 sen \, x \cos x - \cos^2 x) = sen^2 \, x - sen \, (2x) + \cos^2 x =

= 1 - sen \, (2x) = 0 \implies sen \ (2x) = 1.

Isto significa que 2x = \frac{\pi}{2} e daí x = \frac{\pi}{4}.


Atenciosamente
Editado pela última vez por Neperiano em Ter Nov 01, 2011 15:18, em um total de 1 vez.
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Raízes da equação

Mensagempor MarceloFantini » Ter Nov 01, 2011 15:11

Andreza, desconsidere a resposta do Neperiano. Primeiro, é interessante lembrar algumas relações trigonométricas úteis: \textrm{sen}^2 x + \cos^2 x = 1 e 2 \cdot \textrm{sen } x \cdot \cos x = \textrm{sen}(2x). Desta forma, a equação se torna:

sen^2 \, x - (2 sen \, x \cos x - \cos^2 x) = sen^2 \, x - sen \, (2x) + \cos^2 x =

= 1 - sen \, (2x) = 0 \implies sen \ (2x) = 1.

Isto significa que 2x = \frac{\pi}{2} e daí x = \frac{\pi}{4}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Marcelo F

Mensagempor Andreza » Ter Nov 01, 2011 18:04

Muito obrigada Marcelo.
Na verdade eu só conhecia a primeira relação fundamental q vc mencionou na resolução do exercício.
Agora vou incluir a segunda nos outros exercícios q estou estudando.
Sendo x =45 graus como faço para encontar a segunda raiz?
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)