por TheoFerraz » Sex Out 28, 2011 16:14
A ideia é:
"determine uma curva

que passe pelo ponto

e intercepte ortogonalmente todas as curvas da familia

"
O fato é que eu consegui terminar o exercicio mas nao estou convencido de uma passagem que eu fiz.
em um momento voce se depara igualando o gradiente da função

que fica

á derivada da função gamma.
resulta um sistema assim:


Se voce imagina as variaveis x e y como funções, tudo bem, essas equações diferenciais vão apontar uma exponencial que de fato é a resposta. Mas pra mim elas não são funções. são variaveis do plano real, só. não são funçoes de t.
Não compreendo por que posso tratar o x do lado direito da igualdade como função. Na minha cabeça é só uma incógnita
Estou tendo dificuldade nessa parte da teoria, alguem pode ajudar ? obrigado.
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por LuizAquino » Sáb Out 29, 2011 11:16
TheoFerraz escreveu:Estou tendo dificuldade nessa parte da teoria, alguem pode ajudar ? obrigado.
Vide uma interpretação geométrica do exercício (fora de escala).

- interpretação-geométrica.png (9.69 KiB) Exibido 3212 vezes
Note que o ponto

pertence as curvas

e

.
Dessa maneira, quando fazemos

, estamos considerando essa equação em algum ponto

que pertence ao mesmo tempo a

e

. Ou seja, esse ponto

no qual estamos avaliando
f depende de
t.
Sendo assim, no sistema de equações diferenciais abaixo
x e
y são funções de
t:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Aplicações da Derivada
por Bruhh » Qua Jun 02, 2010 19:00
- 2 Respostas
- 4705 Exibições
- Última mensagem por Bruhh

Sáb Jun 05, 2010 18:25
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações de integrais
por Isla » Qua Fev 23, 2011 12:12
- 3 Respostas
- 3297 Exibições
- Última mensagem por LuizAquino

Qua Fev 23, 2011 21:40
Cálculo: Limites, Derivadas e Integrais
-
- Aplicacoes de derivadas
por aline_n » Qui Jun 02, 2011 17:29
- 1 Respostas
- 3663 Exibições
- Última mensagem por LuizAquino

Qui Jun 02, 2011 20:34
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas - Aplicações]
por Scheu » Sex Mar 16, 2012 00:01
- 1 Respostas
- 1734 Exibições
- Última mensagem por MarceloFantini

Sex Mar 16, 2012 03:17
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações da Derivada
por Thyago Quimica » Seg Out 29, 2012 18:44
- 1 Respostas
- 2789 Exibições
- Última mensagem por e8group

Seg Out 29, 2012 19:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.