• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aplicações do vetor gradiente] Aplicações das propriedades

[Aplicações do vetor gradiente] Aplicações das propriedades

Mensagempor TheoFerraz » Sex Out 28, 2011 16:14

A ideia é:

"determine uma curva \gamma (t) = (x(t),y(t)) que passe pelo ponto \gamma (0) = (1,2) e intercepte ortogonalmente todas as curvas da familia {x}^{2} + 2{y}^{2} = c\; , \; \forall \; c \in R "

O fato é que eu consegui terminar o exercicio mas nao estou convencido de uma passagem que eu fiz.

em um momento voce se depara igualando o gradiente da função f(x,y)= {x}^{2} + 2{y}^{2} que fica \nabla (x,y) = 2 \times (x,2y) á derivada da função gamma.

resulta um sistema assim:

x'(t) = x

y'(t) = 2y

Se voce imagina as variaveis x e y como funções, tudo bem, essas equações diferenciais vão apontar uma exponencial que de fato é a resposta. Mas pra mim elas não são funções. são variaveis do plano real, só. não são funçoes de t.
Não compreendo por que posso tratar o x do lado direito da igualdade como função. Na minha cabeça é só uma incógnita


Estou tendo dificuldade nessa parte da teoria, alguem pode ajudar ? obrigado.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [Aplicações do vetor gradiente] Aplicações das proprieda

Mensagempor LuizAquino » Sáb Out 29, 2011 11:16

TheoFerraz escreveu:Estou tendo dificuldade nessa parte da teoria, alguem pode ajudar ? obrigado.


Vide uma interpretação geométrica do exercício (fora de escala).

interpretação-geométrica.png
interpretação-geométrica.png (9.69 KiB) Exibido 3203 vezes


Note que o ponto (x_0,\,y_0) pertence as curvas \gamma (t) e f(x,\,y)=c .

Dessa maneira, quando fazemos \nabla f(x,\,y) = \gamma^\prime(t) = (x^\prime(t),\,y^\prime(t)), estamos considerando essa equação em algum ponto (x_0,\, y_0) que pertence ao mesmo tempo a \gamma (t) e f(x,\,y)=c . Ou seja, esse ponto (x,\,y) no qual estamos avaliando f depende de t.

Sendo assim, no sistema de equações diferenciais abaixo x e y são funções de t:

\nabla f(x,\,y) = (x^\prime,\,y^\prime) \Rightarrow \begin{cases}2x = x^\prime \\ 4y = y^\prime \end{cases}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}