• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolva, em R, a seguinte inequação

Resolva, em R, a seguinte inequação

Mensagempor andersontricordiano » Sex Out 28, 2011 16:06

Resolva, em R, a seguinte inequação:

{\left(\frac{1}{e} \right)}^{x}<4

Resposta: {x\in R/ x> ln\frac{1}{4}}
Editado pela última vez por andersontricordiano em Sex Out 28, 2011 16:31, em um total de 1 vez.
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva, em R, a seguinte inequação

Mensagempor TheoFerraz » Sex Out 28, 2011 16:17

acho que faltou um "x" não ?
... no enunciado...
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Resolva, em R, a seguinte inequação

Mensagempor andersontricordiano » Sex Out 28, 2011 16:32

valeu pela correção!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva, em R, a seguinte inequação

Mensagempor andersontricordiano » Sex Out 28, 2011 16:33

valeu pela correção
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva, em R, a seguinte inequação

Mensagempor TheoFerraz » Sex Out 28, 2011 16:55

Aplique ln dos dois lados. Aplicar uma função inversível em ambos os lados duma desigualdade não muda a desigualdade.

ln \left(\frac{1}{{e}^{x}} \right) < ln(4)

trabalhando com as propriedades voce tem:

ln(1) - ln({e}^{x})< ln(4)

- ln({e}^{x})< ln(4) - ln(1)

multiplica -1 e muda a desigualdade:

ln({e}^{x})>  ln(1) - ln(4)

x >  ln(\frac{1}{4})
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)