• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolva, em R, a seguinte inequação

Resolva, em R, a seguinte inequação

Mensagempor andersontricordiano » Sex Out 28, 2011 16:06

Resolva, em R, a seguinte inequação:

{\left(\frac{1}{e} \right)}^{x}<4

Resposta: {x\in R/ x> ln\frac{1}{4}}
Editado pela última vez por andersontricordiano em Sex Out 28, 2011 16:31, em um total de 1 vez.
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva, em R, a seguinte inequação

Mensagempor TheoFerraz » Sex Out 28, 2011 16:17

acho que faltou um "x" não ?
... no enunciado...
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Resolva, em R, a seguinte inequação

Mensagempor andersontricordiano » Sex Out 28, 2011 16:32

valeu pela correção!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva, em R, a seguinte inequação

Mensagempor andersontricordiano » Sex Out 28, 2011 16:33

valeu pela correção
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva, em R, a seguinte inequação

Mensagempor TheoFerraz » Sex Out 28, 2011 16:55

Aplique ln dos dois lados. Aplicar uma função inversível em ambos os lados duma desigualdade não muda a desigualdade.

ln \left(\frac{1}{{e}^{x}} \right) < ln(4)

trabalhando com as propriedades voce tem:

ln(1) - ln({e}^{x})< ln(4)

- ln({e}^{x})< ln(4) - ln(1)

multiplica -1 e muda a desigualdade:

ln({e}^{x})>  ln(1) - ln(4)

x >  ln(\frac{1}{4})
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: