• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo de uma parabola de uma função do 2º grau

Estudo de uma parabola de uma função do 2º grau

Mensagempor gomusalie » Qui Out 27, 2011 15:53

O vertice da parabola y= ax2 + bx + c e o ponto (-2,3). Sabendo que 5 e a ordenada onde a curva corta o eixo vertical, podemos afirmar que
(A) a>1, b<1 e c<4
(B) a>2, b>3 e c>4
(C) a<1, b<1 e c>4
(D) a<1, b>1 e c>4
(E) a<1, b<1 e c<4
________________________________________________________________________________________________
Bom, para mim, só falta o valor do b. Olha como eu fiz:
Bom, Tracei o grafico, e marquei os pontos (-2,3) e deu no quarto quadrante. Bom, 5 é o valor de "c" pois é o valor em que corta o eixo de y, certo? com isso ele cortando o y num valor positivo de 5, então para ser uma função, a lógica é que a concavidade é voltada para baixo, então "a" é negativo, ou seja a<1. Agora o "c" --> Como o valor que corta o eixo y é 5, eu acho que o "c" é 5, portanto c>4. Agora eu fico na duvida de como achar o "b". Obg e aguardo resposta!
gomusalie
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Out 27, 2011 15:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Estudo de uma parabola de uma função do 2º grau

Mensagempor angieluis » Qui Out 27, 2011 19:14

Uma outra forma de apresentar uma parabola (função quadratica) é:
y=a{(x-h)}^{2}+k em que (h,k) são as coordenadas do vertice da parabola.
assim temos:
y=a{(x-(-2))}^{2}+3
y=a({x}^{2}+4x+4)+3
y=a{x}^{2}+4ax+4a+3(1)
no ponto (0,5) temos, substituindo x e y:
5=4a+3
a=0,5
voltando a (1) e substituindo agora a temos:
y=0,5{x}^{2}+2x+5 onde está muito claro os valores de a, b e c.
Resposta: D
angieluis
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Out 27, 2011 18:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}