• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo de uma parabola de uma função do 2º grau

Estudo de uma parabola de uma função do 2º grau

Mensagempor gomusalie » Qui Out 27, 2011 15:53

O vertice da parabola y= ax2 + bx + c e o ponto (-2,3). Sabendo que 5 e a ordenada onde a curva corta o eixo vertical, podemos afirmar que
(A) a>1, b<1 e c<4
(B) a>2, b>3 e c>4
(C) a<1, b<1 e c>4
(D) a<1, b>1 e c>4
(E) a<1, b<1 e c<4
________________________________________________________________________________________________
Bom, para mim, só falta o valor do b. Olha como eu fiz:
Bom, Tracei o grafico, e marquei os pontos (-2,3) e deu no quarto quadrante. Bom, 5 é o valor de "c" pois é o valor em que corta o eixo de y, certo? com isso ele cortando o y num valor positivo de 5, então para ser uma função, a lógica é que a concavidade é voltada para baixo, então "a" é negativo, ou seja a<1. Agora o "c" --> Como o valor que corta o eixo y é 5, eu acho que o "c" é 5, portanto c>4. Agora eu fico na duvida de como achar o "b". Obg e aguardo resposta!
gomusalie
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Out 27, 2011 15:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Estudo de uma parabola de uma função do 2º grau

Mensagempor angieluis » Qui Out 27, 2011 19:14

Uma outra forma de apresentar uma parabola (função quadratica) é:
y=a{(x-h)}^{2}+k em que (h,k) são as coordenadas do vertice da parabola.
assim temos:
y=a{(x-(-2))}^{2}+3
y=a({x}^{2}+4x+4)+3
y=a{x}^{2}+4ax+4a+3(1)
no ponto (0,5) temos, substituindo x e y:
5=4a+3
a=0,5
voltando a (1) e substituindo agora a temos:
y=0,5{x}^{2}+2x+5 onde está muito claro os valores de a, b e c.
Resposta: D
angieluis
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Out 27, 2011 18:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59