• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Elipse, hipérbole, parábola] Dificuldade em exercícios!

[Elipse, hipérbole, parábola] Dificuldade em exercícios!

Mensagempor geo_nascimento » Dom Out 23, 2011 15:47

Boa tarde,
não consigo realizar umas questões de elipse e hipérbole ela tem cara de fácil mas pra mim é uma pedra no sapato:

Determinar a equação da elipse de centro C(0,0), focos no eixo de x, excentricidade e=2/3 e passa pelo ponto P(2,-5/3). Não sei por onde começar...

E tem essa também que tá dando uma dor de cabeça : Determine o centro, focos, semi-eixos, assíntota e reta diretriz (se houver) da equação 9x²-58y²+18y+29=0.

por favor me ajudem, tenho um teste sobre isso, obrigado!
geo_nascimento
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 23, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Elipse, hipérbole, parábola] Dificuldade em exercícios!

Mensagempor LuizAquino » Seg Out 24, 2011 16:33

geo_nascimento escreveu:não consigo realizar umas questões de elipse e hipérbole ela tem cara de fácil mas pra mim é uma pedra no sapato:

De fato, as duas questões são fáceis como você verá a seguir. É só trabalhar com as definições e características das cônicas.

Determinar a equação da elipse de centro C(0,0), focos no eixo de x, excentricidade e=2/3 e passa pelo ponto P(2,-5/3).

A equação dessa elipse tem o formato:

\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 , sendo a e b números positivos e não nulos.

Por definição, sabemos que sua excentricidade é dada pela relação:

e = \frac{c}{a} , sendo que c = \sqrt{a^2 - b^2} e a > b .

Sendo assim, dos dados do exercício temos a equação:

\frac{\sqrt{a^2-b^2}}{a} = \frac{2}{3}

O outro dado do exercício diz que a elipse passa pelo ponto (2, -5/3). Isso significa que esse ponto deve atender a equação da elipse. Isto é, podemos escrever que:

\frac{2^2}{a^2} + \frac{\left(-\frac{5}{3}\right)^2}{b^2} = 1

Considerando então as duas equações que foram obtidas, para resolver o exercício basta calcular a solução do sistema:

\begin{cases}
\frac{\sqrt{a^2-b^2}}{a} = \frac{2}{3} \\
\\
\frac{2^2}{a^2} + \frac{\left(-\frac{5}{3}\right)^2}{b^2} = 1
\end{cases}

Agora tente terminar a resolução.

Determine o centro, focos, semi-eixos, assíntota e reta diretriz (se houver) da equação 9x²-58y²+18y+29=0.

Será necessário arrumar a equação para que ele fique no formato reduzido. Para isso, nesse caso deve-se completar quadrados em relação a variável y.

9x^2-58y^2+18y+29=0

9x^2 - 58\left(y^2 - \frac{9}{29}y\right) + 29=0

9x^2 - 58\left[\left(y - \frac{9}{58}\right)^2 - \left(\frac{9}{58}\right)^2\right] + 29=0

9x^2 - 58\left(y - \frac{9}{58}\right)^2 + \frac{81}{58} + 29=0

9x^2 - 58\left(y - \frac{9}{58}\right)^2  = -\frac{1763}{58}

Dividindo toda essa equação por -\frac{1763}{58} :

-\frac{522x^2}{1763} + \frac{3364\left(y - \frac{9}{58}\right)^2}{1763}  = 1

Note que essa equação representa uma hipérbole.

Agora tente identificar as características solicitadas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: