por vinik1 » Qua Out 12, 2011 16:03
Tenho o seguinte problema:
Dois resistores R1 e R2 são conectados em paralelo, e a resistência equivalente R medida em ? é dada por:

Se R1 e R2 estão variando a uma taxa de 0,1 ?/s e 0,4 ?/s respectivamente,
determinar a taxa de variação de R quando R1=75? e R2=100?
Então:
R1 em função de t (em segundos):

R2 em função de t

Muito bem..
Cheguei na expressão de R em função de t (em segundos):
Que é igual a:

Então, a taxa de variação é 2/25, certo?
Mas aonde vai o 75 e o 100??????
Como a função é linear, a derivada não varia, certo? ou seja, o 75 e 100 não servem para nada?
Estou interpretando algo errado, ou o professor colocou esses valores justamente para gerar essa duvida nos alunos?
?
?
-
vinik1
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Mar 08, 2011 19:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Neperiano » Qua Out 12, 2011 22:07
Ola
Não cheguei ainda em associção de resistores, mas acredito que aqueles valores só servem para tu descobrir o tempo, tu pode isolar o t com eles, na física vai haver muitas questões, pricipalmente em termodinâmica que metade das informações não vai servir para nada.
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por LuizAquino » Qua Out 12, 2011 22:08
vinik1 escreveu:R1 em função de t (em segundos):

R2 em função de t

Você já começou a errar a partir daqui.
Leia com
atenção o enunciado:
"(...) Se R1 e R2 estão variando a uma taxa de 0,1 ?/s e 0,4 ?/s respectivamente (...)"O que isso significa é:


Como
R está em função de

e

, sendo que eles estão em função do tempo, temos que
R também está em função do tempo.
Aplicando a regra da cadeia, temos que:

Lembrando que

, que é o mesmo que

, temos que as derivadas de
R em relação a

e a

serão:


Pelos dados do exercício, temos que

e

. Sendo assim, podemos dizer que:


Portanto, no final temos que a taxa de variação de
R considerando os dados fornecidos será:
ObservaçãoEu recomendo que você assista a vídeo-aula "18. Cálculo I - Taxas de Variação Relacionadas". Ela está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por vinik1 » Qua Out 12, 2011 22:46
LuizAquino escreveu:vinik1 escreveu:R1 em função de t (em segundos):

R2 em função de t

Você já começou a errar a partir daqui.
Leia com
atenção o enunciado:
"(...) Se R1 e R2 estão variando a uma taxa de 0,1 ?/s e 0,4 ?/s respectivamente (...)"
Pois é, mas a minha interpretação foi a seguinte:
A taxa de variação é 0,1 ?/s
Se essa taxa é constante, isso significa uma função linear, com o coeficiente angular da reta de 0,1 onde o eixo da ordenadas é R1 (em ?) e o eixo da abscissa é t (em segundos)
certo?
Ai vem a minha função:

logo

Tem algo de errado ai?? Até ai eu não tinha duvidas...
Se estiver errado, estou equivocado, e isso nao é bom
Depois que eu entender o meu erro nesse ponto, passo para o próximo.
Pensando em gráficos, eu não consegui enxergar aonde vai os valores de 75 e 100, pois se tratando de funções lineares, as taxas de variação são constantes!
R em função de t é linear? como seria essa função?
Vou assistir a aula que vc me disse, talvez ele me dê uma luz
Obrigado!
-
vinik1
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Mar 08, 2011 19:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por LuizAquino » Qui Out 13, 2011 10:13
vinik1 escreveu:Pois é, mas a minha interpretação foi a seguinte:
A taxa de variação é 0,1 ?/s
Se essa taxa é constante, isso significa uma função linear, com o coeficiente angular da reta de 0,1 onde o eixo da ordenadas é R1 (em ?) e o eixo da abscissa é t (em segundos)
certo?
Ai vem a minha função:

logo

Tem algo de errado ai??
O formato geral de uma função linear é

. Note que há dois coeficientes a determinar:
a e
b.
Das informações do exercício, você até pode supor

.
Mas quanto ao valor de
b? Não há informação no problema que permita o seu cálculo!
A única coisa que você sabe é que há um tempo

(que não foi fornecido), tal que

. Isso não é suficiente para determinar explicitamente o valor de
b. O máximo que você pode fazer é expressar
b em função de

. Mas nesse caso você apenas estaria trocando uma informação desconhecida por outra!
vinik1 escreveu:R em função de t é linear?
Não!vinik1 escreveu:como seria essa função?
Supondo que

,

e usando o fato de que

, temos que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por vinik1 » Qui Out 13, 2011 10:48
Compreendi meu erro, mas ainda não consegui enxergar a resolução do exercício..
Voltarei a pensar nele com calma no final de semana..
-
vinik1
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Mar 08, 2011 19:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas das funções
por Luna » Ter Out 27, 2009 14:41
- 1 Respostas
- 2092 Exibições
- Última mensagem por Molina

Ter Out 27, 2009 17:06
Funções
-
- Derivadas de Funções
por METEOS » Qua Mai 07, 2014 17:20
- 1 Respostas
- 1557 Exibições
- Última mensagem por Russman

Qua Mai 07, 2014 19:54
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas de funções Exponenciais
por Ana Maria da Silva » Dom Jun 30, 2013 13:33
- 3 Respostas
- 3856 Exibições
- Última mensagem por Molina

Sex Jul 12, 2013 22:27
Cálculo: Limites, Derivadas e Integrais
-
- Extremos de funções e derivadas
por Victor Mello » Dom Nov 17, 2013 12:20
- 4 Respostas
- 2624 Exibições
- Última mensagem por Victor Mello

Dom Nov 17, 2013 19:16
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda - Funções derivadas
por METEOS » Dom Mai 18, 2014 14:01
- 0 Respostas
- 1008 Exibições
- Última mensagem por METEOS

Dom Mai 18, 2014 14:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.