por beel » Ter Out 04, 2011 23:44
Como achar o valor de (fog)'(x) para as funções f,g e o ponto x dado que
f(u)= 1 - 1/u , u=g(x)=1/(1-x) e x=-1 ?
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Qua Out 05, 2011 10:57
isanobile escreveu:Como achar o valor de (fog)'(x) para as funções f,g e o ponto x dado (...)
Primeiro, lembre-se que escrever

é o mesmo que escrever

. Sendo assim, calcular

é o mesmo que calcular
![[f(g(x))]^\prime [f(g(x))]^\prime](/latexrender/pictures/f618369117b4e2d375770b45645fdbfe.png)
. Basta então aplicar a Regra da Cadeia:
![[f(g(x))]^\prime = f^\prime(g(x))g^\prime(x) [f(g(x))]^\prime = f^\prime(g(x))g^\prime(x)](/latexrender/pictures/43b700ef86b2f826eb9f4de60fe885f5.png)
Já que

e

, você sabe que

e

.
Fazendo a composição de

com

, temos que
![f^\prime(g(x)) = \frac{1}{[g(x)]^2} = (1-x)^2 f^\prime(g(x)) = \frac{1}{[g(x)]^2} = (1-x)^2](/latexrender/pictures/f403bf60f9c98ad5c5814948f3960f99.png)
.
Agora tente continuar a resolução substituindo essas informações na expressão obtida pela Regra da Cadeia.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por beel » Sex Out 07, 2011 21:26
Seria
![(1-x)^2[\frac{1}{(1-x)^2]} (1-x)^2[\frac{1}{(1-x)^2]}](/latexrender/pictures/176447d5c7aa1fe81df00700d1de4005.png)
?
[ f'(g(x))g'(x) ]
E como no enunciado ele fala que x=-1 é so substituir?
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Sáb Out 08, 2011 18:30
isanobile escreveu:Seria
![(1-x)^2\left[\frac{1}{(1-x)^2}\right] (1-x)^2\left[\frac{1}{(1-x)^2}\right]](/latexrender/pictures/31b13fccba626b705695f23b6c3978cc.png)
?
[ f'(g(x))g'(x) ]
Sim. Mas lembrando-se que x = 1 não faz parte do domínio de g, podemos escrever que:
![[f(g(x))]^\prime = (1-x)^2 \cdot \frac{1}{(1-x)^2} = 1 [f(g(x))]^\prime = (1-x)^2 \cdot \frac{1}{(1-x)^2} = 1](/latexrender/pictures/2e93e5ec05b749b422a245d2bd1704fc.png)
isanobile escreveu:E como no enunciado ele fala que x=-1 é so substituir?
Sim. Mas como a função derivada é constante, o seu valor em x = -1 (ou em qualquer outro ponto de seu domínio) é simplesmente 1. Isto é, temos que
![[f(g(-1))]^\prime = 1 [f(g(-1))]^\prime = 1](/latexrender/pictures/5aeeb806f130239d749166c3fa28d436.png)
.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por beel » Qui Out 13, 2011 12:31
Entendi, obrigada.
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [CALCULO] derivada de função composta
por beel » Ter Out 04, 2011 22:45
- 4 Respostas
- 2115 Exibições
- Última mensagem por beel

Dom Out 16, 2011 16:55
Cálculo: Limites, Derivadas e Integrais
-
- [CALCULO] derivada de função composta 2
por beel » Ter Out 04, 2011 22:58
- 5 Respostas
- 2984 Exibições
- Última mensagem por beel

Qui Out 13, 2011 12:33
Cálculo: Limites, Derivadas e Integrais
-
- [Função composta]Achar o dominio de uma função composta
por lucasmath » Dom Abr 12, 2015 16:09
- 0 Respostas
- 2114 Exibições
- Última mensagem por lucasmath

Dom Abr 12, 2015 16:09
Funções
-
- [FUNÇÃO] NAO CONSIGO ENTENDER FUNÇÃO COMPOSTA!
por Gabriela AlmeidaS » Seg Mai 12, 2014 19:18
- 5 Respostas
- 5207 Exibições
- Última mensagem por Toussantt

Dom Jan 24, 2016 15:34
Funções
-
- Função composta
por scorpion » Sáb Out 25, 2008 11:09
- 2 Respostas
- 4092 Exibições
- Última mensagem por scorpion

Qua Out 29, 2008 14:26
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.