• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Antiderivada.

Antiderivada.

Mensagempor SheylaTamarossi » Sáb Out 01, 2011 19:02

Olá... Estou com dúvida nesta questão, se puderem me ajudar...
Calcular a antiderivada de:
\int_{}^{} \frac{{x}^{4} + {3x}^{2} + 5}{{x}^{2}} dx



Devo integrar parte por parte, desse jeito?\int_{}^{} \frac{{x}^{4}}{{x}^{2}} + \int_{}^{} \frac{{3x}^{2}}{{x}^{2}} + \int_{}^{} \frac{5}{{x}^{2}} dx
Ou devo derivar a funçaõ toda?
SheylaTamarossi
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jun 12, 2011 10:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: 3° ano
Andamento: cursando

Re: Antiderivada.

Mensagempor Neperiano » Sáb Out 01, 2011 19:43

Ola

Assim, se for pra integra você pode fazer isso que você fez, se for pra deriva,dai tenque sera função toda, eu só fiquei na dúvida, o que é pra fazer, antiderivada de integral é derivada?

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Antiderivada.

Mensagempor MarceloFantini » Dom Out 02, 2011 15:19

A integral é a antiderivada, ou seja, basta resolver a integral. O que você fez está certo Sheyla, agora basta enxergar como polinômios.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Antiderivada.

Mensagempor Neperiano » Dom Out 02, 2011 16:23

Ola

Tá mas o que seria, a antiderivada da integral?

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Antiderivada.

Mensagempor MarceloFantini » Dom Out 02, 2011 16:26

Você não entendeu. A antiderivada É a integral, ou seja, antiderivada=integral.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Antiderivada.

Mensagempor Neperiano » Dom Out 02, 2011 16:29

Ola

Eu sei, mas pelo que foi postado pelo exercíco, dá a entender que é a antiderivada da integral

SheylaTamarossi escreveu:Olá... Estou com dúvida nesta questão, se puderem me ajudar...
Calcular a antiderivada de:
\int_{}^{} \frac{{x}^{4} + {3x}^{2} + 5}{{x}^{2}} dx



Devo integrar parte por parte, desse jeito?\int_{}^{} \frac{{x}^{4}}{{x}^{2}} + \int_{}^{} \frac{{3x}^{2}}{{x}^{2}} + \int_{}^{} \frac{5}{{x}^{2}} dx
Ou devo derivar a funçaõ toda?


Entende, eu sei que antiderivada é integral, mas pelo que está ali, parece outra coisa

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}