por Claudin » Sáb Out 01, 2011 11:33
Seja
f definida por

A resolução seria:

A função é descontínua no ponto x=1, porque em

, o resultado teria que ser também 2, como em x=1, correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Renato_RJ » Sáb Out 01, 2011 15:27
Boa tarde Claudin, tudo em paz ??
Seguinte, a função será contínua se os limites laterais forem iguais, mas não necessariamente igual ao valor de x na função (a imagem de x). Para isso, faça o limite da função quando x tende a 1 pela esquerda e pela direita, se esses limites forem iguais, aí sim a função é contínua...
Abs,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Claudin » Sáb Out 01, 2011 20:06
Tanto pela esquerda e pela direita o valor seria 5, o que difere de 2, que no caso quando x=1.
Ou seja, a função nao e continua, para ser continua o valor correto para os limites laterais deveria ser 2, correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Renato_RJ » Dom Out 02, 2011 00:14
Cuidado, o limite de uma função quando x tende a um valor não é, necessariamente, igual a imagem desse valor na função, isto é, se x = 1 implica em f(x) = 2, então o limite de f(x) quando x tende a 1 não é, necessariamente, 2...
Se os limites laterais são iguais (mesmo sendo diferente da imagem da função no ponto), então a função é contínua..
Abs,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Claudin » Dom Out 02, 2011 10:13
Não compreendi Renato
a definição de função continua nao seria

Portanto para a função ser continua os limites laterais teriam que ser iguais e o

correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Renato_RJ » Dom Out 02, 2011 14:34
A função é dita contínua em um ponto quando seus limites laterais são iguais, isto é:

O seu argumento está correto, mas lembre-se do domínio onde a sua função está definida, um exemplo, use a definição de

na função

no ponto 1.. Você verá que ela é contínua em todo o domínio menos no ponto 1, pois seus limites laterais são diferentes...
Mas no seu exercício, quando x = 1 a f(x) = 2, mas quando

a sua função apresenta outra "cara", logo, para verificar se ela é contínua você teria que fazer o teste dos limites laterais, assim você poderá dizer se a função é contínua em todo o seu domínio (mesmo que a f(1) seja diferente do valor encontrado no limite).
Para melhor compreensão do que ocorre no limite, aconselho a ler sobre limites em algum livro de cálculo, tipo Stewart ou Apostol, lá verá que f(x) é diferente do limite em x, pois o limite expressa a ideia de "movimento na curva", tipo "o quão próximo estou de um valor L quando

"..
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Claudin » Dom Out 02, 2011 14:54
Então a função é continua ou não?
No meu entendimento ela só seria contínua se a função no caso de x diferente de 1, tivesse a imagem 2, como no ponto x=1, a imagem é 2, ai sim seria contínua.
Deixe mais claro para mim.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Dom Out 02, 2011 15:23
A função é
descontínua. Você está errando Renato. É verdade que não necessariamente o limite é o valor da função no ponto (pois ela pode nem estar definida), mas ela será contínua
se e somente se o limite for igual ao valor da função no ponto, ou seja, sempre que

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Claudin » Dom Out 02, 2011 16:38
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Renato_RJ » Seg Out 03, 2011 02:25
MarceloFantini escreveu:A função é
descontínua. Você está errando Renato. É verdade que não necessariamente o limite é o valor da função no ponto (pois ela pode nem estar definida), mas ela será contínua
se e somente se o limite for igual ao valor da função no ponto, ou seja, sempre que

.
Opa, muito obrigado pela correção Marcelo...
Mil perdões Claudin...
[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Claudin » Seg Out 03, 2011 10:37
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Continuidade Limite
por CaioLemos » Qui Mar 22, 2012 13:18
- 2 Respostas
- 2014 Exibições
- Última mensagem por CaioLemos

Qui Mar 22, 2012 17:39
Cálculo: Limites, Derivadas e Integrais
-
- Limite e Continuidade
por Thyago Quimica » Seg Mai 21, 2012 14:11
- 1 Respostas
- 1660 Exibições
- Última mensagem por LuizAquino

Ter Mai 22, 2012 19:22
Cálculo: Limites, Derivadas e Integrais
-
- Limite e Continuidade
por Raquel299 » Sex Abr 10, 2015 10:43
- 2 Respostas
- 1826 Exibições
- Última mensagem por Raquel299

Ter Abr 14, 2015 18:17
Cálculo: Limites, Derivadas e Integrais
-
- Limite e Continuidade
por Raquel299 » Ter Abr 14, 2015 20:58
- 1 Respostas
- 1473 Exibições
- Última mensagem por Cleyson007

Qua Abr 15, 2015 18:26
Cálculo: Limites, Derivadas e Integrais
-
- Limite- Continuidade em intervalos
por killerkill » Sáb Ago 13, 2011 02:25
- 7 Respostas
- 7936 Exibições
- Última mensagem por killerkill

Qua Ago 17, 2011 23:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.