por rafaelmtmtc » Dom Abr 19, 2009 12:56
Bom dia, tenho o seguinte problema:
Devo negar as situações:
Para todo numero real x, existe um numero natural n tal que n>x.
acho que a resposta seria:
Existe um numero real x para todo numero natural n tal que n<x
Existe um numero natural n tal que, para todo numero real x, tem-se n>x
acho que a resposta seria:
Existe um numero real x, tal que para todo numero natural n, tem-se n<x
Estou no caminho certo?
Obrigado
Rafael
-
rafaelmtmtc
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Abr 18, 2009 18:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: lic/bac matematica
- Andamento: cursando
por Molina » Seg Abr 20, 2009 13:02
Bom dia, Rafael.
Faz tempo que não vejo isso profundamente, mas alguma coisa eu ainda lembro.
A negação de
PARA TODO (

) será
EXISTE UM (

), e a negação de
EXISTE UM (

) será
PARA TODO (

).
Então acho que na sua segunda frase tem que fazer alguma mudança, concorda?
Abraços e bom estudo!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por rafaelmtmtc » Seg Abr 20, 2009 20:47
Acho que na segunda fiz isso, porém inverti a ordem das proposições, isto tem alguma interferência nos resultados ou não?
outra coisa, devo inverter o sentido de < e > quando faço o complementar, como fiz no exemplo no fininal da frase?
obrigado,
abrços
Rafael
-
rafaelmtmtc
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Abr 18, 2009 18:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: lic/bac matematica
- Andamento: cursando
por Molina » Seg Abr 20, 2009 21:38
Boa noite, Rafael.
Isso mesmo, você tem que mudar o sinal de maior para menor ou vice-versa.
Cada frase você pode esquematizar com letras (p, q) que já tem o que deve ser feito para negá-la. Dá uma lida nesta página aqui e vê se você encontra o que deve ser feito em outras frases:
http://www.paulomarques.com.br/arq1-4.htmNao tinha percido que você tinha invertido as frases. Acho que está certa então!
Abraços!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por rafaelmtmtc » Seg Abr 20, 2009 22:04
Boa noite Molina,
muito obrigado mesmo.
Rafael
-
rafaelmtmtc
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Abr 18, 2009 18:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: lic/bac matematica
- Andamento: cursando
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida sobre operações entre conjuntos - complementar
por Fernanda Lauton » Sáb Out 09, 2010 21:18
- 3 Respostas
- 2489 Exibições
- Última mensagem por MarceloFantini

Sáb Out 09, 2010 23:18
Funções
-
- Conjunto vazio está dentro de outro conjunto vazio?
por JDomingos » Dom Jul 20, 2014 07:41
- 1 Respostas
- 2118 Exibições
- Última mensagem por DanielFerreira

Dom Jul 20, 2014 12:14
Conjuntos
-
- Conjunto
por Douglaspimentel » Qui Mar 18, 2010 16:52
- 4 Respostas
- 4171 Exibições
- Última mensagem por MarceloFantini

Qua Mai 12, 2010 13:49
Álgebra Elementar
-
- Conjunto
por aline2010 » Dom Jun 13, 2010 22:56
- 1 Respostas
- 1790 Exibições
- Última mensagem por Molina

Seg Jun 14, 2010 00:27
Álgebra Elementar
-
- CONJUNTO
por Douglaspimentel » Sex Dez 10, 2010 16:35
- 0 Respostas
- 1638 Exibições
- Última mensagem por Douglaspimentel

Sex Dez 10, 2010 16:35
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.